
Building with Bricks:
CUDA-based Out-of-Core GigaVoxel Rendering

Cyril Crassin
LJK / INRIA / Grenoble Universities

France

Fabrice Neyret
LJK / INRIA / Grenoble Universities / CNRS

France

Elmar Eisemann
Saarland University / MPI Informatik

Télécom ParisTech; Institut Télécom ; CNRS - LTCI
Germany/France

Abstract—For a long time, triangles have been considered
the state-of-sthe-art primitive for fast interactive applications.
Only recently, with the dawn of programmability of graphics
cards, different representations emerged. Especially for complex
entities, triangles have difficulties in representing convincing
details and faithful approximations quickly become costly. In
this work we investigate Voxels. Voxels can represent very rich
and detailed objects and are of crucial importance in medical
contexts. Nonetheless, one major downside is their significant
memory consumption. Here, we propose an out-of-core method to
deal with large volumes in real-time. Only little CPU interaction
is needed which shifts the workload towards the GPU. This makes
the use of large voxel data sets even easier than the, usually
complicated, triangle-based LOD mechanisms that often rely on
the CPU. This simplicity might even foreshadow the use of volume
data, in game contexts. The latter we underline by presenting
very efficient algorithms to approximate standard effects, such
as soft shadows, or depth of field.

I. INTRODUCTION

Graphics hardware advances rapidly and every year its
performance grows. This allows us to represent more and
more complex objects, but we are still far from representing a
complete artificial world at a convincing level of detail. Even
the capture of real-world data, e.g., via 3D scanners, seems
to advance at a pace that counteracts any advancements of
graphics hardware. For medical and biological applications,
gigabytes of data need to be visualized and achieving this
goal in real-time is far from being trivial.

In principle, graphics hardware relies on standard rasteriza-
tion to display a triangular mesh on the screen, but the recent
development, away from a fixed-function pipeline to a more
general device with programmable units, opens up the road
for many exciting possibilities. In this work, we will present
a new rendering algorithm that enables the display of gigantic
volume-data sets.

Volume data is important in many applications, but efficient
algorithms, like [15], hint at a more extensive use of voxels
in the future. Voxels are well-suited to represent detailed
elements and filtering operations lead to a multi-resolution
representation that can be associated to various levels of
detail. This property is interesting, as it implies that a high
visual quality can be obtained even if the data set is not

entirely present in memory. Instead, constant-sized blocks of
volume data (so-called bricks) are used to suitably represent
the entire data set in accordance to the current viewpoint.
This reduces the memory consumption, leads to a high visual
quality (because the filtering fights aliasing), and, further,
faster rendering. The problem is that the data in bricks and
the spatial brick structure itself need to be updated when the
camera moves. This is a difficult process and the evaluation
and data transfer should be performed in a suitable manner.

This work presents an efficient out-of-core volume render-
ing system, that exploits the parallel programming language
CUDA to reach a new level of interactivity even for very
complex data sets. We show that this technique could soon be
integrated in many interactive applications. We underline its
strength by demonstrating various rendering effects, including
shadow rendering and depth of field.

II. PREVIOUS WORK

A. Volume rendering

In many contexts, voxels are used to represent visually
complex elements, e.g., fur [1], vegetation [2], or pseudo-
surfaces [3], but rendering voxel data was difficult and used a
lot of memory. Early solutions were cumbersome and sliced
volumes [4], but since then, rendering techniques have evolved
tremendously. Many GPU-based approaches have been pub-
lished and a recent overview of real-time volume rendering
techniques is given in [5]. The increasing GPU memory allows
to hold more and more information, but very detailed infor-
mation still implies a high memory cost. Unfortunately, most
efficient rendering solutions assume that the entire volume fits
in the GPU’s memory. This highly limits the quality of the
rendering and real-time approaches applied voxels mostly for
distant representations (e.g., [6], [7], [8]).

Algorithms for the rendering of large volume sets exist and
much research focuses on this topic. Boada et al. [9] choose
varying resolution levels throughout the volume. LaMar et
al. [10] choose brick resolutions according to the distance
of the observer. Guthe and Strasser [11] compressed data in
a view-dependent manner, but the approach involved much



Fig. 1. An octree hierarchy is used to represent the much more detailed
original volume

CPU work. A strong view-dependent GPU-based method is
still needed.

View-dependence is important, as in practice, for a single
image, the full volume is rarely needed. Especially due to
occlusion much data can be avoided. Further, one can benefit
from clustered data, e.g., by compaction [12] or fast traversal
of empty space, avoidance of occluded regions [13], or by
stopping rays when a certain opacity level is reached.

Such techniques have been involved in the work by Gobbetti
et al. [14] and Crassin et al. [15]. Our new approach is based
on this techniques which is why we will take a closer look at
these solutions in the next section.

B. Multi-resolution brick-based Out-of-core methods

Here, we give a simplified presentation of the original
GigaVoxel algorithm [15] which is intended to help the
understanding of the following sections.

The main concept of the algorithm is shared with [14]. The
space is subdivided via an octree. Each octree node stores a
brick, a small 3D texture of some constant size (e.g., 163) as
illustrated in Figure 1. The nodes, as well as the 3D textures
are maintained in a memory pool that resides on the GPU side.
The rendering was performed using a ray-tracing approach.
The octree is refined (or coarsened) based on the current
viewpoint and the underlying data, as shown in Figure 2 We
still rely on these principles.

One major property of the GigaVoxel algorithm is that the
actual level of refinement is associated directly to the results of
the rendering. In practice, this has been achieved by recovering
information about the data that was used by each ray during the
traversal of the structure. If information is declared missing,
the corresponding ray reports this miss.

The CPU recovers these ray results and processes them.
Missing data is uploaded and the octree is restructured accord-
ingly from the CPU side. Further, an LRU-caching scheme is
applied on the CPU side. Basically, each data element obtains
a time stamp which is reset upon usage. When new data is
needed to be uploaded the CPU, it overwrites with preference
those elements in GPU memory who’s usage lies most in the
past.

The original system relied on a combination of shaders and
GP GPU techniques to achieve interactive results.

Fig. 2. A ray-tracing algorithm shoots rays through a volume hierarchy
to produce the final image. Each node contains a constant sized 3D texture
(brick). Depending on the viewpoint and the volume data, the octree is refined
such that the resulting image is of high quality, without being obliged to keep
the entire data set in memory.

III. OUR METHOD

Our new system is still relatively complex as it builds upon
previous work. It combines a new fast ray-tracing algorithm
and a novel efficient query mechanism. It would not be
possible to describe the entire solution in this document,
therefore, we will concentrate on a few improvements with
respect to previous work.

First, we will show how we can decide on the GPU-side
which elements are the least used and should be replaced
if necessary and how to transfer a compact list to the CPU
in order to initiate the update phase. With this approach,
we reduce the throughput of information from the GPU to
the CPU which is crucial, as the exchange of data between
CPU and GPU still represents an important bottleneck in the
current hardware architectures. We will analyze this process
in Section III-A.

Second, this document presents two examples for efficient
effects that are difficult to achieve for triangles, but can be
produced rather convincingly with a voxelized scene repre-
sentation (Section III-B).

A. GPU-side LRU Caching

Previously, each ray sent back usage information of the
entire node hierarchy. To reduce bandwidth, only a partial
transfer was performed that exploited temporal and spatial
coherence. In our new extension, we rely on a different
mechanism: We maintain a usage list that contains all elements
in the order of there most recent usage. The oldest elements
are therefore always those that are situated at the beginning of
the list. To make this GPU-LRU-scheme possible, we proceed
as follows.

Each node and data entry has an associated usage stamp
on the GPU side. During the ray traversal, each ray activates
the usage stamps of the elements that are visited. During
this marking step, we also set a flag that indicates whether
or not a refinement or data upload is needed. Coarsening of
the structure is implicitly handled. It is possible to employ a
strategy that allows us to avoid any atomic operations in this
step.

Once, all rays finished the traversal, we update the usage
list. We flag all the elements in the usage list, that have been
used in the current frame, which can be tested by relying on
the usage stamps. This is done by looping over all the usage



stamps. Then we perform two stream reductions, to separate
all elements in the usage list that were used in the current
frame from the others. By relying on an order-maintaining
reduction, the concatenation of the two list then gives us
exactly the updated usage list we were looking for, where
the least-recently-used elements are still in the beginning and
the most-recently-used ones at the end. Any memory uploads
can then directly replace the first elements in this list, making
the approach very efficient.

B. Voxel Effects

The regular structure of voxel data is well suited for
multi-resolution representations. We exploited this property
to reduce aliasing, accelerate the ray-tracing process, and
decrease memory consumption. Nevertheless, the same LOD
mechanisms can be applied for other effects. These effects are
of interest to improve the realism of a depicted scene, but also
to facilitate understanding of content.

The principle of our solutions is based on ray-
differentials [16]. Low-pass filtering is at the basis of many
interesting, yet complex effects and often very costly. Our idea
is to rely on the multi-resolution structure to recover low-pass
filtered information. This enables us to achieve convincing
simulations that only add little supplementary overhead. In
fact, in the case of depth-of-field, we will see that this effect
can even accelerate rendering.

1) Shadow Rendering: Shadows are crucial cues for the un-
derstanding of spatial relationships and especially soft shadows
help interpretation [17]. For standard triangular representations
soft shadow algorithms usually involve complex and costly
computations. In the case of our voxel data, it is possible to
approximate the result with a heuristic approach that delivers
high-quality rendering.

To compute a soft shadow, multiple rays, in form of a cone,
are sent to the light source. A good approximation is to set
the final shadow intensity as the ratio between blocked rays,
that impinged on a surface and rays that reached the source.
Testing all these rays separately is infeasible in real time.
Instead, we interpret the cone as a filter that is applied to the
data. To some extent this follows approaches for triangular
representations [18], [19].

In practice, we start from an initial impact volume which
corresponds to the pixel footprint of the location where the
eye ray meets the surface. From here, we cover the cone with
multiple lookups of varying size as illustrated in Figure 3.
For each lookup, we receive the average of the voxel data
it covers. The lookups access varying mipmap levels in the
data hierarchy. Assuming a random distribution inside the
averaged region, this mipmap value indicates the probability
that a passing ray is blocked by the contained surface. By
assuming independence of these values, the probability for a
ray to be blocked by the surfaces is a multiplication of these
values. The result then defines the final shading value. An
example is shown in Figure 4.

For triangular models, large light sources are a challenge
and not many algorithms can deal with this difficult situation.

Fig. 3. To evaluate visibility of a light source, rays are shot in a cone towards
the source. We approximate the ratio of blocked rays by various heuristically-
combined mipmap lookups.

Fig. 4. Example of real-time shadows of our approximate algorithm.

Interestingly, the softer the shadow, the faster our algorithm
becomes. This is due to the fact that more low-resolution
values are recovered from the actual volume if the light source
is larger. The technique is fully compatible with our out-of-
core algorithm.

2) Depth of Field: To render depth-of-field effects, just as
for shadows, we cover the set of rays with multiple lookups.
In this particular case the rays form a double cone that meets
on the focal plane. This is illustrated in Figure 5. A result is
shown in Figure 6.

Interestingly, this time, these rays are eye rays and are
directly responsible for the content of the final image. Conse-
quently, much less high-resolution data is necessary to produce
the output on the screen. This has an interesting effect: A
larger depth-of-field blur results in a faster rendering and a
better cache behavior. This is very different for triangle-based
approaches that can be relatively expensive even for advanced
algorithms [20] (although it should be pointed out that their

Fig. 5. Depth-of-field rendering, just like shadow computations, are obtained
by shooting ray bundles.



Fig. 7. Left: large data set (20483), Middle: procedural data of a Mandelbrot set (basically infinite resolution), Right: on-the-fly voxelization of 3D models.

Fig. 6. Example of the out-of-focus effect with our approximate algorithm.

result is more accurate).

IV. RESULTS

Our approach reaches interactive rates for complex sce-
narios. We tested our technique on various scenes, including
large volume data, procedural data, and on-the-fly voxelized
content (Figure 7). The framerate varies between 20-60 fps
on a GT280 graphics card depending on the viewpoint for a
1024 × 764 resolution. In comparison with GigaVoxels [15],
the data queries are approximately twice as fast.

V. CONCLUSION

We showed that our new algorithm improves the original
GigaVoxel [15] approach by better exploiting parallel comput-
ing. We showed how to reduce the GPU/CPU transfer, as well
as CPU interaction. We, further, simplified and accelerated
the process of detecting data misses. Finally, we demonstrated
that our approach allows the approximation of complex effects
very efficiently. The resulting images are of very high quality,
making our technique an interesting means to depict large and
complex volume data representations.

REFERENCES

[1] J. T. Kajiya and T. L. Kay, “Rendering fur with three dimensional
textures,” in SIGGRAPH, 1989, pp. 271–280.

[2] P. Decaudin and F. Neyret, “Rendering forest scenes in real-time,”
in Rendering Techniques (EGSR), june 2004, pp. 93–102. [Online].
Available: http://www-evasion.imag.fr/Publications/2004/DN04

[3] F. Neyret, “Modeling animating and rendering complex scenes using
volumetric textures,” IEEE Transactions on Visualization and Computer
Graphics, vol. 4, no. 1, pp. 55–70, Jan.–Mar. 1998.

[4] P. Lacroute and M. Levoy, “Fast volume rendering using a shear-warp
factorization of the viewing transformation,” in SIGGRAPH, 1994, pp.
451–458.

[5] K. Engel, M. Hadwiger, J. Kniss, C. Rezk-Salama, and D. Weiskopf,
Real-time Volume Graphics. AK-Peters, 2006.

[6] A. Meyer and F. Neyret, “Multiscale shaders for the efficient realistic
rendering of pine-trees,” in Proceedings of GI (Graphics Interface),
2000.

[7] E. Gobbetti and F. Marton, “Far voxels: a multiresolution framework
for interactive rendering of huge complex 3d models on commodity
graphics platforms,” in ACM Transactions on Graphics (Proceedings of
SIGGRAPH). ACM, 2005.

[8] P. Decaudin and F. Neyret, “Volumetric billboards,”
Computer Graphics Forum, 2009. [Online]. Available:
http://evasion.imag.fr/Publications/2009/DN09

[9] I. Boada, I. Navazo, and R. Scopigno, “Multiresolution volume visual-
ization with a texture-based octree,” Vis. Comput., vol. 13, no. 3, 2001.

[10] E. LaMar, B. Hamann, and K. I. Joy, “Multiresolution techniques
for interactive texture-based volume visualization,” in Proceedings of
Visualization (VIS), 1999, pp. 355–361.

[11] S. Guthe and W. Strasser, “Advanced techniques for high quality
multiresolution volume rendering,” in Computers & Graphics. Elsevier
Science, 2004, pp. 51–58.

[12] M. Kraus and T. Ertl, “Adaptive texture maps,” in ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware (HWWS),
2002, pp. 7–15.

[13] W. Li, K. Mueller, and A. Kaufman, “Empty space skipping and
occlusion clipping for texture-based volume rendering,” in Proceedings
of IEEE Visualization (VIS), 2003, p. 42.

[14] E. Gobbetti, F. Marton, J. Antonio, and I. Guitian, “A single-pass GPU
ray casting framework for interactive out-of-core rendering of massive
volumetric datasets,” Vis. Comput., vol. 24, no. 7, pp. 797–806, 2008.

[15] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann, “Gigavoxels: ray-
guided streaming for efficient and detailed voxel rendering,” in I3D ’09:
Proceedings of the 2009 symposium on Interactive 3D graphics and
games. New York, NY, USA: ACM, 2009, pp. 15–22.

[16] H. Igehy, “Tracing ray differentials,” in SIGGRAPH ’99: Proceedings of
the 26th annual conference on Computer graphics and interactive tech-
niques. New York, NY, USA: ACM Press/Addison-Wesley Publishing
Co., 1999, pp. 179–186.

[17] D. Kersten, D. C. Knill, P. Mamassian, and I. Blthoff, “Illusory motion
from shadows,” Nature, vol. 379, no. 31, 1996.

[18] E. Eisemann and X. Décoret, “Plausible image based soft shadows
using occlusion textures,” in Proceedings of the Brazilian Symposium
on Computer Graphics and Image Processing, 19 (SIBGRAPI), ser.
Conference Series, R. L. Oliveira Neto, Manuel Menezes deCarceroni,
Ed., IEEE. IEEE Computer Society, 2006. [Online]. Available:
http://artis.imag.fr/Publications/2006/ED06a

[19] E. Eisemann and X. Décoret, “Occlusion textures for plausible soft
shadows,” Computer Graphics Forum, vol. 27, no. 1, pp. 13–23, 2008.
[Online]. Available: http://artis.imag.fr/Publications/2008/ED08

[20] S. Lee, E. Eisemann, and H.-P. Seidel, “Depth-of-Field Rendering with
Multiview Synthesis,” ACM Transactions on Graphics (Proc. ACM
SIGGRAPH ASIA), vol. 28, no. 5, pp. 1–6, 2009.


