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22.1 Introduction

Discrete voxel representations are generating growing interest in a wide range of
applications in computational sciences and particularly in computer graphics. Ap-
plications range from fluid simulation [Crane et al. 05], collision detection [Allard
et al. 10], and radiative transfer simulation to detail rendering [Crassin et al. 09,
Crassin et al. 10, Laine and Karras 10] and real-time global illumination [Kaplanyan
and Dachsbacher 10,Thiedemann et al. 11,Crassin et al. 11]. When used in real-time
contexts, it becomes critical to achieve fast 3D scan conversion (also called voxeliza-
tion) of traditional triangle-based surface representations [Eisemann and Décoret 08,
Schwarz and Seidel 10, Pantaleoni 11].

In this chapter, we will first describe an efficient OpenGL implementation of a
simple surface voxelization algorithm that produces a regular 3D texture (see Fig-
ure 22.1). This technique uses the GPU hardware rasterizer and the new image
load/store interface exposed by OpenGL 4.2. This section will allow us to familiarize
the reader with the general algorithm and the new OpenGL features we leverage.

In the second part, we will describe an extension of this approach, which enables
building and updating a sparse voxel representation in the form of an octree structure.
In order to scale to very large scenes, our approach avoids relying on an intermediate-
full regular grid to build the structure and constructs the octree directly. This second
approach exploits the draw indirect features standardized in OpenGL 4.0 in order to
allow synchronization-free launching of shader threads during the octree construc-
tion, as well as the new atomic counter functions exposed in OpenGL 4.2.
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304 III Bending the Pipeline

Figure 22.1. Real-time voxelization of dynamic objects into a sparse voxel octree (Wald’s hand 16K triangles
mesh voxelized sparsely in approximately 5.5 ms) and use of the technique for a voxel-based global illumination

application.

One of our main motivations in this work has been to investigate the usability of
the hardware graphics pipeline for fast and real-time voxelization. We will compare
the performance of our approach to the recent work of Pantaleoni [Pantaleoni 11],
which uses CUDA for regular-grid thin voxelization, and detail the performance
of our sparse-octree building approach. A typical real-time usage of our dynamic
voxelization inside a sparse voxel octree has been demonstrated recently as part of the
voxel-based global illumination approach described in [Crassin et al. 11].

22.2 Previous Work

Previous work on 3D voxelization makes a distinction between two kinds of surface
voxelization: thin voxelization, which is a 6-separating representation of a surface
(cf. [Huang et al. 98]) and fully conservative voxelization, where all voxels overlapped
by a surface are activated, or 26-separating (Figure 22.2). Although our method
could easily be extended to fully conservative voxelization, in this chapter we will
only describe the case of thin voxelization. Thin voxelization is cheaper to compute
and is often more desirable in computer graphics applications.

Figure 22.2. Examples of a 4-separating (left) and an 8-separating (right) 2D line rasteriza-
tion equivalent to 6-separating and 26-separating surface voxelizations in 3D.
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In recent years, many algorithms have been proposed that exploit GPUs by
performing triangle mesh voxelization. Early approaches used the fixed-function
pipeline found in commodity graphics hardware of the time. Previous hardware-
based approaches [Fang et al. 00,Crane et al. 05,Li et al. 05] were relatively inefficient
and suffered from quality problems. Due to the lack of random write access, these
approaches had to use a multipass rendering technique, processing the volume slice
by slice and retransforming the entire geometry with each pass. In contrast, [Dong
et al. 04,Zhang et al. 07,Eisemann and Décoret 08] process multiple slices at a time
by encoding voxel grids with a compact binary representation, achieving higher per-
formance but limited to binary voxelization (only storing a single bit to represent an
occupied voxel).

Newer voxelization approaches take advantage of the freedom offered by the
compute mode (CUDA or OpenCL) available on modern GPUs [Schwarz and Sei-
del 10, Pantaleoni 11]. Instead of building on the fixed-function hardware, these
approaches propose pure data-parallel algorithms, providing more flexibility and al-
lowing new original voxelization schemes like direct voxelization into a sparse octree.
However, using only the compute mode of the GPU means that these approaches
don’t take advantage of the powerful fixed-function graphics units, particularly the
hardware rasterizer, that effectively provide a very fast point-in-triangle test func-
tion and sampling operation. With increasing industry focus on power efficiency
for mobile devices, utilizing efficient fixed-function hardware is increasingly impor-
tant. Our method combines the advantages of both approaches, taking advantage
of the fast fixed-function graphics units while requiring only a single geometry pass
and allowing sparse voxelization thanks to the most recent evolutions of the GPU
hardware.

22.3 Unrestricted Memory Access in GLSL

Previous graphics-based approaches (not using compute) were limited by the fact
that all memory write operations had to be done through the ROP (fragment op-
eration) hardware, which does not allow random access and 3D-addressing because
only the current pixel could be written. Recently, the programming model offered by
OpenGL shaders has changed dramatically, with GLSL shaders acquiring the ability
to generate side effects and to dynamically address arbitrary buffers and textures, for
example, the OpenGL 4.2 specification standardized image units access in GLSL (pre-
viously exposed through the EXT shader image load store extension). This
feature, only available on Shader Model 5 (SM5) hardware, gives us the ability to
perform read/write access as well as atomic read-modify-write operations into a sin-
gle mipmap level of a texture from any GLSL shader stage. Beyond textures, linear
memory regions (buffer objects stored in GPU global memory) can also be easily ac-
cessed with this feature using “buffer textures” bound to a GLSL imageBuffer.
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In addition, the NVIDIA-specific extensions NV shader buffer load and
NV shader buffer store (supported on Fermi-class SM5 hardware), provide sim-
ilar functionality on linear memory regions, but they do this through C-like pointers
in GLSL, and the ability to query the global memory address of any buffer object.
This approach simplifies the access to buffer objects and allows arbitrary numbers
of discontinuous memory regions (different buffer objects) to be accessed from the
same shader invocation, while only a limited number of image units can be accessed
by a given shader (this number is implementation dependent and can be queried
using GL MAX IMAGE UNITS).

These new features dramatically change the computation model of GPU shaders
and give us the ability to write algorithms with much of the same flexibility as CUDA
or OpenCL, while still taking advantage of the fast fixed-function hardware.

22.4 Simple Voxelization Pipeline

In this section we will present an initial simple approach to directly voxelize into a
regular grid of voxels stored in a 3D texture. Our voxelization pipeline is based on
the observation that, as shown in [Schwarz and Seidel 10], a thin surface voxelization
of a triangle B can be computed for each voxel V by testing if (1) B’s plane intersects
V , (2) the 2D projection of the triangle B along the dominant axis of its normal (one
of the three main axes of the scene that provides the largest surface for the projected
triangle) intersects the 2D projection of V .

Based on this observation, we propose a very simple voxelization algorithm that
operates in four main steps inside a single draw call (illustrated in Figure 22.3). First,
each triangle of the mesh is projected orthographically along the dominant axis of
its normal, which is the one of the three main axes of the scene that maximizes the
projected area and thus maximizes the number of fragments that will be generated
during the conservative rasterization. This projection axis is chosen dynamically on
a per-triangle basis inside a geometry shader (see Figure 22.4), where information
about the three vertices of the triangle is available. For each triangle, the selected axis
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Figure 22.3. Illustration of our simple voxelization pipeline.
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Figure 22.4. Implementation of our voxelization pipeline on top of the GPU rasterization pipeline.

is the one that provides the maximum value for l{x,y,z} = |n · v{x,y,z}|, with n the
triangle normal and v{x,y,z} the three main axes of the scene. Once the axis selected,
the projection along this axis is simply a classical orthographic projection, and this is
calculated inside the geometry shader.

Each projected triangle is fed into the standard setup and rasterization pipeline
to perform 2D scan conversion (rasterization, see Figure 22.4). In order to get frag-
ments corresponding to the 3D resolution of the destination (cubical) voxel grid, we
set the 2D viewport resolution (glViewport(0, 0, x, y)) to correspond to lat-
eral resolution of our voxel grid (for instance 512× 512 pixels for a 5123 voxel grid).
Since we rely on image access instead of the standard ROP path to the framebuffer
to write data into our voxel grid, all framebuffer operations are disabled, includ-
ing depth writes, depth testing (glDisable(GL DEPTH TEST)) and color writes
(glColorMask(GL FALSE, GL FALSE, GL FALSE, GL FALSE)).

During rasterization, each triangle generates a set of 2D fragments. Each of
these fragments can correspond to the intersection of the triangle with one, two
or three voxels along its direction of projection. Indeed, due to our choice of the
dominant triangle axis for projection (and the use of cubic voxels), the depth range
of a triangle across a 2D pixel can only span a maximum of three voxels in depth.
For each 2D fragment, the voxels actually intersected by the triangle are computed
within the fragment shader, based on position and depth information interpolated
from vertices’ values at the pixel center, as well as screen-space derivatives provided
by GLSL (dFdx()/dFdy()).

This information is used to generate what we call voxel fragments. A voxel frag-
ment is the 3D generalization of the classic 2D fragment and corresponds to a voxel
intersected by a given triangle. Each voxel fragment has a 3D integer coordinate
inside the destination voxel grid, as well as multiple attribute values.

Voxel-fragment attributes are usually a color, a normal, and any other useful
attribute one would want to store per voxel, depending on the application. As usual,
these values can be either interpolated on pixel centers from vertex attributes by the
rasterization process or sampled from the traditional 2D surface textures of the model
using interpolated texture coordinates. In our demo implementation, we only store
one color value as well as one normal vector (used for shading during the rendering
of the voxel grid) per voxel.
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Finally, voxel fragments are written directly from the fragment shader into their
corresponding voxel inside the destination 3D texture, where they must be com-
bined. This is done using image load/store operations as detailed in Section 22.4.2.

22.4.1 Conservative Rasterization

Although it is very simple, this approach does not ensure a correct thin (6-separating
planes [Schwarz and Seidel 10]) voxelization. This is due to the fact that only the
coverage of the center of each pixel is tested against the triangles to generate frag-
ments during the rasterization step. Thus, a more precise conservative rasterization
must be employed to ensure that a fragment will be generated for each pixel touched
by a triangle. The precision of the coverage test could be enhanced by relying on
multisample antialiasing (MSAA), but this solution only delays the problem a little
further and still misses fragments in the case of small triangles. Instead, and similarly
to [Zhang et al. 07], we build upon the second conservative rasterization approach
proposed in [Hasselgren et al. 05]. We will not detail the technique here, and we
invite the reader to refer to [Hasselgren et al. 05] for more details.

The general idea is to generate, for each projected triangle, a slightly larger
bounding polygon that ensures that any projected triangle touching a pixel will nec-
essarily touch the center of this pixel and thus will get a fragment emitted by the
fixed-function rasterizer. This is done by shifting each triangle edge outward in or-
der to enlarge the triangle using the geometry shader (Figure 22.4). Since the exact
bounding polygon that does not overestimate the coverage of a given triangle is not
triangle-shaped (Figure 22.5), the excess fragments outside the bounding box are
killed in the fragment shader after rasterization. This approach entails more work in
the fragment shader but, in practice, is faster than computing and generating exactly
the correct bounding polygon inside the geometry shader.

Pixel footprint

Original triangle

Enlarged triangle

Clipping region

Figure 22.5. Bounding polygon of a triangle used for conservative rasterization.
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22.4.2 Compositing Voxel Fragments

Once voxel-fragments have been generated in the fragment shader, their values can
be written directly into the destination 3D texture using image load/store operations.
However, multiple voxel fragments from different triangles can fall into the same
destination voxel in arbitrary order. Since voxel fragments are created and processed
in parallel, the order in which they will be written is not predictable, which leads to
write-ordering issues and can create flickering and non–time-coherent results when
dynamically revoxelizing a scene. In standard rasterization, this problem is handled
by the ROP units, which ensure that fragments are composed in the framebuffer in
the same order as their source primitives have been issued.

In our case, we have to rely on atomic operations. Atomic operations guarantee
that the read-modify-write cycle is not interrupted by any other thread. When mul-
tiple voxel fragments end up on the same voxel, the most simple desirable behavior
is averaging all incoming values. For specific applications, one may want to use more
sophisticated combination schemes like coverage-based combination, but this goes
beyond the scope of this chapter.

Averaging values using atomic operations. To average all values falling into
the same voxel, the simplest way is to first sum all values using an atomic add opera-
tion and then divide this sum by the total number of values in a subsequent pass. To
do so, a counter must be maintained per voxel, and we rely on the alpha channel of
the RGBA color values we store per voxel for this purpose.

However, image-atomic operations are restricted to 32-bit signed/unsigned in-
teger types in OpenGL 4.2 specification, which will rarely correspond to the texel
format used in the voxel grid. We generally want to store RGBA8 or RGBA16F/32F
color components per voxel. Thus, the imageAtomicAdd function cannot be used
directly as is to do the summation.

We emulate an atomic add on such types by relying on a compare-and-swap
atomicCompSwap()operation using the function detailed in Listing 22.1. The idea
is to loop on each write until there are no more conflicts and the value, with which
we have computed the sum has not been changed by another thread. This approach
is a lot slower than a native atomicAdd would be but still allows a functionally
correct behavior while waiting for the specification to evolve. On NVIDIA hardware,
an atomicCompSwap64 operating on 64-bit values can be used on global memory
addresses (NV shader buffer store), which allows us to cut by half the number
of operations and thus provides a two times speedup over the cross-vendor path.
Unfortunately, this process is not exposed for image access, which requires the voxel
grid to be stored inside the global memory instead of the texture memory.

A second problem appears when using an RGBA8 color format per voxel. With
such a format, only 8 bits are available per color component, which quickly causes
overflow problems when summing the values. Thus, the average must be computed
incrementally each time a new voxel fragment is merged into a given voxel. To do
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void imageAtomicFloatAdd(layout(r32ui) coherent volatile uimage3D imgUI , ivec3 ←֓
coords, float val)

{

uint newVal = floatBitsToUint(val);
uint prevVal = 0; uint curVal ;

//Loop as long as destination value gets changed by other threads
while( (curVal = imageAtomicCompSwap(imgUI , coords , prevVal , newVal)) != prevVal )

{
prevVal = curVal;
newVal = floatBitsToUint((val + uintBitsToFloat(curVal)));

}
}

Listing 22.1. AtomicAdd emulation on 32-bit floating point data type using a compare-and-swap operation.

this, we simply compute a moving average using the following formula:

Ci+1 =
iCi + xi+1

i + 1
.

This can be done easily by slightly modifying the previous swap-based atomic add
operation as shown in Listing 22.2. Note that this approach will only work if all data
to be stored, including the counter, can be swapped together using one single atomic
operation.

vec4 convRGBA8ToVec4(uint val){

return vec4( float((val&0 x000000FF)), float((val&0x0000FF00)>>8U), float ((val&0←֓
x00FF0000) >>16U), float((val&0xFF000000) >>24U) );

}

uint convVec4ToRGBA8(vec4 val){
return (uint(val.w)&0 x000000FF) <<24U | (uint(val.z)&0x000000FF) <<16U | (uint(val.y←֓

)&0 x000000FF)<<8U | (uint(val.x)&0x000000FF);
}

void imageAtomicRGBA8Avg(layout(r32ui) coherent volatile uimage3D imgUI , ivec3 ←֓
coords, vec4 val) {

val.rgb*=255.0 f; //Optimise following calculations
uint newVal = convVec4ToRGBA8(val);

uint prevStoredVal = 0; uint curStoredVal;
//Loop as long as destination value gets changed by other threads
while( (curStoredVal = imageAtomicCompSwap(imgUI , coords , prevStoredVal , newVal)) ←֓

!= prevStoredVal) {
prevStoredVal = curStoredVal;

vec4 rval=convRGBA8ToVec4(curStoredVal);
rval.xyz=(rval.xyz*rval.w); // Denormalize

vec4 curValF =rval+val; //Add new value
curValF .xyz/=(curValF .w); // Renormalize
newVal = convVec4ToRGBA8(curValF );

}
}

Listing 22.2. AtomicAvg on RGBA8 pixel type implemented with a moving average and using a compare-

and-swap atomic operation.
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22.4.3 Results

Figure 22.6. Stanford dragon
voxelized into a 1283 voxels grid.

Table 22.1 shows execution times (in milliseconds)
of our voxelization algorithm on the Stanford dragon
mesh (871K triangles, Figure 22.6), for 1283 and
5123 voxel resolutions, with and without conserva-
tive rasterization, and with direct write or merging of
values (Section 22.4.2). All timings have been done
on an NVIDIA GTX480.

Fermi and Kepler hardware support 32-bit float-
ing point (FP32) atomic add operation on both im-
ages and global memory pointers, which is exposed
through the NV shader atomic float extension.
Times marked with a star correspond to the results
obtained with this native atomicAdd operation in-
stead of our emulation. The right table compares
our results using an FP32 voxel grid with VoxelPipe [Pantaleoni 11].

As can be seen, our approach provides as good or even better results than [Panta-
leoni 11] when no merging is done (which does not give the same voxelization result)
or when native atomic operations can be used (as is the case for R32F and RG16 voxel
formats). For RG16 voxel formats (two normalized short integers), we perform the
merging inside each voxel using the native atomicAdd operating on an unsigned
int value, which works as long as the 16 bits per component do not overflow.

However, performance drops dramatically when we use our atomic emulation in
floating-point format (R32F, nonstarred results) or our atomic moving average on
RGBA8 formats (Section 22.4.2). Our FP32 atomicAdd emulation appears up to
25 times slower than the native operation when a lot of collisions occur. Paradoxically

Std. raster. Cons. raster. VoxelPipe

Format Res Write Merge Write Merge Write Merge

R32F
128 1.19 1.24* /1.40 1.63 2.41* /62.1 4.80 5.00
512 1.38 2.73* /5.15 1.99 5.30* /30.74 5.00 7.50

RG16
128 1.18 1.24 1.63 2.16

512 1.44 2.38 2.03 4.46

RGBA8
128 1.18 1.40 1.63 69.80
512 1.47 5.30 2.07 31.40

Table 22.1. Execution time (in milliseconds) of our voxelization algorithm and comparison

with VoxelPipe on the Stanford dragon mesh. Times marked with a star correspond to the
results obtained with the hardware atomicAdd operation instead of our emulation.
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in these cases, lower resolution voxelization ends up slower than higher resolution,
due to the increase in the number of collisions encountered per voxel.

22.5 Sparse Voxelization into an Octree

The goal of our sparse voxelization is to store only the voxels that are intersected
by mesh triangles instead of a full grid in order to handle large and complex scenes
and objects. For efficiency, this representation is stored in the form of a sparse-voxel
octree in the spirit of [Laine and Karras 10] and [Crassin et al. 09]. To simplify
explanations in the following sections, we will use the compute terminology and
describe our algorithm in terms of kernels and launching of threads. The way we
actually perform such compute-like thread execution in OpenGL will be described
in Section 22.5.6.

22.5.1 Octree Structure

Our sparse-voxel octree is a very compact pointer-based structure, implemented sim-
ilarly to [Crassin et al. 09]. Its memory organization is illustrated in Figure 22.7.
The root node of the tree represents the entire scene; each of its children represents
an eighth of its volume and so forth for every node.

Octree nodes are stored in linear video memory in a buffer object called the octree
pool. In this buffer, nodes are grouped into 2×2×2 node tiles, which allows us to store
a single pointer in each node (actually an index into the buffer) pointing to eight child
nodes. Voxel values can be stored directly into the nodes in linear memory or can
be kept in bricks associated with the node tiles and stored in a big 3D texture. This
node-plus-brick scheme is the one used in [Crassin et al. 11] to allow fast trilinear
sampling of voxel values.
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This structure contains values for all levels of the tree, which allows querying
filtered voxel data at any resolution and with increasing detail by descending the tree
hierarchy. This property is highly desirable and was strongly exploited in our global
illumination application [Crassin et al. 11].

22.5.2 Sparse-Voxelization Overview

In order to build the octree structure, our sparse-voxelization algorithm builds upon
the regular grid voxelization we presented earlier. Our entire algorithm is illustrated
in Figure 22.8. The basic idea of our approach is very simple.

We build the structure from top to bottom, one level at a time, starting from
the 1-voxel root node and progressively subdividing nonempty nodes (intersected
by at least one triangle) in each successive octree level of increasing resolution (step
2 in Figure 22.8). For each level, nonempty nodes are detected by voxelizing the
scene at the resolutions corresponding to the resolution of the level, and a new tile
of 23 subnodes is created for each of them. Finally, voxel-fragment values are written
into the leaves of the tree and mipmapped into the interior nodes (steps 3 and 4 in
Figure 22.8).
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Figure 22.8. Illustration of our octree-building steps.

22.5.3 Voxel-Fragment List Construction Using an Atomic
Counter

Actually revoxelizing the entire mesh multiple times, once for each level of the octree,
would be very costly. Instead, we chose to voxelize it only once at the maximum
resolution, the resolution of the deepest octree level, and to write generated voxel
fragments into a voxel fragment list (step 1 in Figure 22.8). This list is then used
instead of the triangle mesh to subdivide the octree during the building process.

Our voxel-fragment list is a linear vector of entries stored inside a preallocated
buffer object. It is made up of multiple arrays of values, one containing the 3D
coordinate of each voxel fragment (encoded in one 32-bit word with 10 bits per
component and 2 unused bits) and the others containing all the attributes we want
to store. In our demo implementation we only keep one color per voxel fragment.

In order to fill this voxel-fragment list, we voxelize our triangle scene similarly
to how we did in the first part of this chapter. The difference here is that instead of
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directly writing voxel fragments into a destination 3D texture, we append them to
our voxel fragment list. To manage the list, we store the index of the next available
entry (that is also a counter of the number of voxel fragments in the list) as a single
32-bit value inside another buffer object.

This index needs to be accessed concurrently by thousands of threads append-
ing voxel values, so we implement it with a new atomic counter (introduced with
OpenGL 4.2). Atomic counters provide a highly optimized atomic increment/decre-
ment operation on 32-bit integer variables. In contrast to the generic atomicInc or
atomicAdd operations that allow dynamic indexing, atomic counters are designed
to provide high performance when all threads operate on the same static memory re-
gion.

22.5.4 Node Subdivision

The actual subdivision of all nodes of a given octree level is done in three steps
as illustrated in Figure 22.9. First, the nodes that need to be subdivided are flagged,
using one thread per entry of the voxel-fragment list. Each thread simply traverses the
octree from top to bottom, down to the current level (where there is no node linking
subnodes), and flags the node in which the thread ended. Since multiple threads will
end up flagging the same octree nodes, this allows us to gather all subdivision requests
for a given node. This flag is implemented simply by setting the most significant bit
of the children pointer of the node.

Whenever a node is flagged to be subdivided, a set of 2 × 2 × 2 subnodes (a
tile) needs to be allocated inside the octree pool and linked to the node. Thus, in a
second step, the actual allocation of these subnode tiles is performed by launching
one thread per node of the current octree level. Each thread first checks the flag of
its assigned node, and if it is marked as touched, a new node tile is allocated and its
index is assigned to the childNode pointer of the current node. This allocation of
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new node tiles inside the octree pool is done using a shared atomic counter, similarly
to what we do for the voxel-fragment list (Section 22.5.3).

Finally, these new nodes need to be initialized, essentially to null child node
pointers. This is performed in a separate pass so that one thread can be associated
with each node of the new octree level (Figure 22.9, step 3).

22.5.5 Writing and Mipmapping Values

Once the octree structure has been built, the only remaining task is to fill it with the
values from the voxel fragments. To do so, we first write the high-resolution voxel
fragment values into the leaf nodes of the octree. This is achieved using one thread
per entry of the voxel-fragment list. Each thread uses a similar scheme to the regular
grid to splat and merge voxel-fragment values into the leaves (Section 22.4.2).

In a second step, we mipmap these values into the interior nodes of the tree. This
is done level-per-level from bottom to top, in n− 1 steps for an octree of n levels. At
each step, we use one thread to average the values contained in the eight sub-nodes
of each non-empty node of the current level. Since we built the octree level-by-level
(Section 22.5.2), node tiles get automatically sorted per level inside the octree pool.
Thus, it is easy to launch threads for all nodes allocated in a given level to perform
the averaging. These two steps are illustrated in Figure 22.8 (steps 3 and 4).

22.5.6 Synchronization-Free Compute-Like Kernel Launch
Using draw indirect

In contrast to using CUDA or OpenCL, launching kernels with a specific number
of threads (as we described) is not trivial in OpenGL. We propose to implement
such kernel launches by simply using a vertex shader triggered with zero input vertex
attributes. With this approach, threads are identified within the shader using the
gl VertexID built-in variable that provides a linear thread index.

Since our algorithm is entirely implemented on the GPU, all data necessary for
each step of our approach are present in video memory. In order to provide optimal
performance, we want to avoid reading back these values to the CPU to be able to
launch new kernels since any readback will stall the pipeline. Instead, we rely on
indirect draw calls (glDrawArraysIndirect) that read the call parameters from a
structure stored within a buffer object directly in video memory.

This allows us to batch multiple kernel launches for successive steps of our al-
gorithm with the actual thread configuration (the number of threads to launch and
the starting offset) depending on the result of previous launches with absolutely zero
CPU synchronization. Such GPU-driven kernel launch is currently not possible ei-
ther in CUDA or in OpenCL.

We modify launch parameters using lightweight kernel launches with only one
thread in charge of writing correct values into the draw indirect structure through
global memory pointers.
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With this approach, different kernels launched successively can potentially get
scheduled at the same time on the GPU, and read/write ordering between two kernels
is not ensured. When one kernel depends on the result of a previous kernel for its
execution, we ensure that the data will be available to the threads of the second kernel
by using memory barriers (glMemoryBarrier() command).

22.5.7 Results and Discussion

Table 22.2 shows computation time (in milliseconds) for the different steps of our
algorithm on three representative scenes. Times marked with a star correspond to the
results when atomic-based fragment merging is activated. The maximum voxeliza-
tion resolution is 5123 (9 octree levels). We use RGBA32F voxel values stored into a
buffer object in global memory, and all timings have been done on a Kepler-based
NVIDIA GTX680. We can observe that most of the time is spent in the octree
construction, especially flagging the nodes (Section 22.5.4). Overall performance is
30% to 58% faster compared to a Fermi-based GTX480, and the atomic fragment
merging is up to 80% faster.

Figure 22.10. The Sponza scene voxelized into our octree structure at a maximum resolution of respectively
5123, 2563 , and 643 voxels and rendered without filtering.

Frag

list

Octree Construction
Write Mipmap Total

Scene Flag Create Init Total

Hand 0.17 0.89 0.18 0.35 1.42 0.35/ 0.9* 0.55 2.49/ 3.04*

Dragon 3.51 4.93 0.22 0.49 5.64 2.01/ 3.05* 0.78 11.94/ 12.98*

Sponza 2.07 5.65 0.37 1.32 7.34 2.25/ 3.94* 2.09 13.75/ 15.44*

Table 22.2. Step-by-step execution time (in milliseconds) of our sparse octree voxelization for three different
scenes. Times marked with a star correspond to the results when atomic-based fragment merging is activated.
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Figure 22.10 shows the results of voxelizing the Sponza atrium scene into octree
structures of different resolutions. We used this octree construction algorithm inside
the voxel-based global illumination technique described in [Crassin et al. 11]. In this
approach, a static environment must be quickly prevoxelized, and then at runtime,
dynamic objects must be updated in real time inside the structure. Thanks to our
fast voxelization approach, we were able to keep this structure update under 15% of
the whole frame time.

Currently, one of the weakness of our approach is the requirement of preallocat-
ing the octree buffer with a fixed size. Although this may seem like a problem, it is
in fact often desirable to manage this buffer as a cache, similar to what is proposed
in [Crassin et al. 09].

22.6 Conclusion

In this chapter, we presented two approaches to voxelize triangle meshes, one pro-
ducing a regular voxel grid and one producing a more compact sparse voxel octree.
These approaches take advantage of the fast rasterization hardware of the GPU to
implement efficient 3D sampling and scan conversion. Our approach dramatically
reduces the geometrical cost of previous graphics-based approaches, while in most
cases providing similar or slightly higher performance than state-of-the-art compute-
based approaches. Although it was not detailed here, our approach supports a fast
dynamic update of the octree structure, allowing us to merge dynamic objects inside
a static prevoxelized environment, as demonstrated in [Crassin et al. 11]. Details can
be found in the accompanying source code. Possible future work includes optimiz-
ing the voxel merging as well as the conservative rasterization implementation. In
fact, the new NVIDIA Kepler architecture already improves atomic operation per-
formance considerably.
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