
Aggregate G-Buffer Anti-Aliasing
-Extended Version-

Cyril Crassin
NVIDIA

Morgan McGuire
NVIDIA / Williams College

Kayvon Fatahalian
Carnegie Mellon University

Aaron Lefohn
NVIDIA

1

2

3

1

2

3

AGAA8x MSAA
Figure 1: Large image rendered with Aggregate G-Buffer Anti-Aliasing (AGAA). The AGAA results (red outlines) shaded only twice per pixel
give comparable results to the MSAA reference shaded eight times per pixel, and use 37% less memory. AGAA reduces aliasing by prefiltering
the scene’s sub-pixel geometric detail (foliage, thin railings, etc.) into a small set of statistical aggregates per-pixel.

Abstract

We present Aggregate G-Buffer Anti-Aliasing (AGAA), a new
technique for efficient anti-aliased deferred rendering of complex
geometry using modern graphics hardware. In geometrically com-
plex situations where many surfaces intersect a pixel, current ren-
dering systems shade each contributing surface at least once per
pixel. As the sample density and geometric complexity increase,
the shading cost becomes prohibitive for real-time rendering. Under
deferred shading, so does the required framebuffer memory. Our
goal is to make high per-pixel sampling rates practical for real-time
applications by substantially reducing shading costs and per-pixel
storage compared to traditional deferred shading. AGAA uses the
rasterization pipeline to generate a compact, pre-filtered geometric
representation inside each pixel. We shade this representation at
a fixed rate, independent of geometric complexity. By decoupling
shading rate from geometric sampling rate, the algorithm reduces
the storage and bandwidth costs of a geometry buffer, and allows
scaling to high visibility sampling rates for anti-aliasing. AGAA
with 2 aggregates per-pixel generates results comparable to 32×
MSAA, but requires 54% less memory and is up to 2.6× faster
(−30% memory and 1.7× faster for 8×MSAA).

Keywords: anti-aliasing, graphics pipelines, pre-filtering, shading

IEEE Transactions on Visualization and Computer Graphics
(TVCG) - October 2016 - Authors Version

1 Introduction

Developing efficient strategies for high quality antialiasing of mas-
sive amounts of sub-pixel geometrical details is one of the most
important challenge for reaching cinematic image quality in real-
time. Offline high-quality renderers enjoy excellent anti-aliasing
quality by sampling geometrically complex environments, such as
those containing foliage, fur, or intricate geometry (e.g., the tables
and furniture details in figure 1), at very high rates in order to prop-
erly capture all sub-pixel details. These environments are challeng-
ing for any rendering system, but are particularly difficult for real-
time systems. Real-time applications traditionally rely on relatively
simple geometry, with surface details encoded inside texture maps,
which can be pre-filtered as a MIP-map hierarchy. However, there
is a global trend in favor of using increasingly complex geometries
for improving overall quality, displaying more detailed scenes, as
well as simplifying authoring processes.

This poses multiple difficulties. First, despite the high performance
of modern GPUs, evaluating the shading function at high sampling
rates remains too costly for real-time applications. Second, be-
cause a deferred shading system delays all shading computations
until after geometric occlusions have been resolved, it must buffer
shading inputs for all samples in the renderer’s G-buffer. At high
sampling rates, the storage and memory bandwidth costs of gener-
ating and accessing this buffer become prohibitive. For example, a
1920×1080 G-buffer holding 16 samples per pixel encoded using
a typical 20-bytes-per-sample layout requires over 600 MB of stor-
age. In addition, shaders evaluating lighting generally access the
G-buffer many times per frame, incurring high bandwidth cost.

To reduce these costs, game engines typically provision storage
for, and limit shader evaluation to, only a few samples per pixel

Aggregate G-Buffer Anti-Aliasing - Extended Version 2

(e.g., four [Tatarchuk et al. 2013]). Post-process anti-aliasing tech-
niques [Chajdas et al. 2011; Lottes 2009] increase image quality
using neighboring pixels or temporally re-projected sample infor-
mation from previous frames [NVI 2014]. Such techniques drasti-
cally under-sample geometry and shading when rendering complex
geometry. As a result, they generally introduce blur and fail to cap-
ture the appearance of sub-pixel details, as illustrated in figure 2.

In this paper, we focus on efficiently shading scenes with many dis-
tinct geometric elements contributing to the appearance of a single
pixel, in the context of real-time deferred rendering systems. The
core idea of our technique is to decouple the rate at which lighting
is computed, which we want to keep as low as possible, from the
sampling rate of geometry and materials. Our goal is to perform
this decoupling while preserving the appearance of high frequency
details in the image.

We achieve this goal by taking inspiration from texture-based and
voxel-based pre-filtering techniques (cf. section 2). We create a
new GPU-based deferred shading pipeline that dynamically gen-
erates and shades compact per-pixel aggregates of statistically de-
fined attributes instead of samples from individual scene surfaces.
We call this new data structure an Aggregate G-buffer (AG-buffer).
It compactly encodes the distribution of depths, normals, and other
material and geometric attributes needed for shading.

We find that only two to three shader evaluations per pixel are re-
quired to achieve image quality (even under motion) commensurate
with densely point-sampled results. Because the proposed method
operates on the outputs of the rasterizer, it is highly general, avoids
analyzing and storing statistics for off-screen or occluded geometry,
and supports dynamic scenes.

Generally, we see this technique as a path forward for driving-up
geometric sampling rate in real-time applications.
The key contributions of this work are:

• A new deferred rendering pipeline that dynamically generates
and shades pre-filtered shading attributes.

• A clustering scheme which distributes geometric samples
among aggregates in order to maximize shading quality.

• A screen-space pre-filtering technique that dynamically filters
attributes from potentially disjoint primitives.

• A shading scheme which operates directly on pre-filtered at-
tributes and handles shadowing correctly.

Throughout the paper, we use the following standard terms: A
primitive is a planar polygon input to rasterization, typically
a triangle but may be a line, quad, or point sprite. A fragment
is the portion of a primitive that lies within a pixel. A sample
is a location (or the values stored at it) within a pixel, which
may be covered by a fragment. A geometry buffer (G-buffer)
is a set of textures into which the shading input (e.g., shading
normal, BSDF coefficients) is written during a G-buffer gen-
eration pass. Subsequent deferred shading passes combine
lighting with the G-buffer to produce an image.

2 Related Work

Decoupling shading rate from visibility sampling rates is a key idea
to reduce shading costs in real time rendering. It is used in the
context of both forward [Akeley 1993; Fatahalian et al. 2010] and
deferred rendering [Lauritzen 2010] as well as in the context of
stochastic rasterization [Clarberg et al. 2013; Liktor and Dachs-
bacher 2012; Ragan-Kelley et al. 2011] or for adaptive shading of

MSAA 32x FXAA

AGAA 2A

32-

1-

Figure 2: Complex objects like the Fur Ball exhibit significant sub-
pixel details (up to 32 triangles per pixel here) and cannot be anti-
aliased using post-process screen-space anti-aliasing techniques
like FXAA [Lottes 2009] (top-right). In contrast, our technique
allows capturing these sub-pixel details, while shading only twice
per pixel (bottom-left).

complex acquired materials [Bagher et al.]. The key idea of each
of these approaches is to reuse shading results across visibility sam-
ples from the same surface. Our work is based on the same reuse
principle, but to ensure full scalability, reuse is applied across mul-
tiple (potentially disconnected) primitives.

A simple way to reduce shading work in a deferred shading
pipeline is to generate a full supersampled G-buffer, but to adap-
tively select only a subset of the samples to shade for each pixel.
Lauritzen [2010] shades only once for simple pixels, which contain
only a single surface, and for every samples in complex pixels, with
multiple surfaces. In the same spirit, Hollander et al. [2013] shade
a more adaptive number of samples, using simple metrics based on
geometric sample attributes and luminance values. These schemes
do not reduce memory requirements and speed-up rendering only
when triangles are large, and the overall per-pixel complexity is
low.

Other techniques hallucinate additional detail through data-
dependent resampling of shading results in adjacent pix-
els [Reshetov 2009; Chajdas et al. 2011; Reshetov 2012] or repro-
jection of results from prior frames [NVI 2014; Herzog et al. 2010].
Decoupling shading from visibility sampling has been explored in
order to reduce shading cost in the context of stochastic render-
ing [Clarberg et al. 2013; Liktor and Dachsbacher 2012; Ragan-
Kelley et al. 2011]. However, these techniques do not allow amor-
tizing shading over multiple primitives, which limits their usabil-
ity for antialiasing. They also rely on complex screen-space data-
structures, which suffer from the lack of hardware acceleration, and
prevent them from reaching realistic performance for real-time ap-
plications.

Our work improves on the approach of Salvi et al. [2012] (SBAA),
which analyses the results of dense geometry sampling during ras-
terization to identify and retain exactly one fragment for each of the
n “most important” surfaces per pixel. However, their method dis-
cards information from all other surfaces, which leads to aliasing
in situations where many surfaces contribute to a pixel’s appear-
ance. Kerzner and Salvi [2014] improve on SBAA by designing a
single-pass rendering algorithm (while SBAA requires a geometric
depth pre-pass for visibility estimation) which also allows merging
shading attributes belonging to similar non-intersecting planes, at
the cost of a software evaluation of visibility using an interlocked
fragment shader. In the context of forward shading, Quad-fragment

Aggregate G-Buffer Anti-Aliasing - Extended Version 3

Merging [Fatahalian et al. 2010] performs a similar merging on the
fly, prior to fragment shader execution and in a more opportunis-
tic way. Additional triangles’ adjacency information is used and
only one set of attributes from the merged input is also retained for
shading.

An alternative approach to reducing rendering costs for geometri-
cally complex scenes is to simplify input geometry prior to rasteri-
zation by approximating it with a lower resolution model (see Lue-
bke et al. [2002] for a survey of techniques). Simplification tech-
niques seek to discard a subset of scene elements while adjusting
surface material properties to maintain surface details [Cohen et al. ;
Yoon et al. 2006; Cook et al. 2007]. Similarly, sprites and billboard
clouds [Décoret et al. 2003; Lacewell et al. 2006] allow complex
unconnected geometries to be simplified and encoded into a limited
number of textured quads. These approaches are attractive in that
they also reduce the cost of geometry processing during rendering,
while our work, like other dynamic filtering approaches, requires
additional geometry processing. However, they require heavy pre-
processing and incur large storage cost for animated objects. In
addition, due to the intrinsically flat (surface-based) nature of the
simplified representation, they also fail to accurately preserve the
appearance of the geometry in the general case, when the simpli-
fied details are truly 3D, coming from multiple surfaces (possibly
disjoint), and scattered in space.

Our approach to modeling aggregate geometry in a pixel
largely takes inspiration from previous works on appearance-
preserving prefiltering of micro-scale surface details into 2D tex-
ture maps [Fournier 1992a; Fournier 1992b; Olano and North 1997;
Toksvig 2005; Han et al. 2007; Olano and Baker 2010; Brune-
ton and Neyret 2011; Dupuy et al. 2013], as well as volumetric
geometric prefiltering schemes [Decaudin and Neyret 2004; Chris-
tensen and Batali 2004; Crassin et al. 2009; Crassin et al. 2011;
Heitz and Neyret]. Voxel-based prefiltering aims at unifying geo-
metric and material descriptions into a unique multi-scale represen-
tation, which is pre-computed and can be queried at any resolution,
and that scalably adapts to the sampling rate used for rendering.
However, such representation currently suffers from several draw-
backs which limits its usability, especially with dynamic scenes. In
particular, it requires a costly pre-process to be built, and induces
important storage costs.

As a preprocess, these approaches pre-filter and tabulate high-
resolution surface details, inside a world-space data structure which
needs to be re-sampled and traversed for visibility estimation at run-
time. Instead, our work leverage rasterization to dynamically sam-
ple and aggregate per-pixel statistics from high-resolution surfaces,
directly inside a screen-space structure, at the required resolution.
While accounting for visibility and masking effects is generally a
problem for appearance-preserving pre-filtering techniques, our ap-
proach dynamically resolves visibility on a per-sample granularity,
prior to aggregation, which greatly improves the quality of the re-
construction.

3 Algorithm

Our method analyzes post-projection geometry and represents the
collection of distinct geometric primitives visible in each pixel us-
ing a small, fixed number of geometry aggregates. Each aggregate
corresponds to a subset of the primitives visible in the pixel, includ-
ing their coverage, the mean and standard deviation of primitive
depths and normals, and mean values of relevant surface attributes.

The following subsections describe a four-step process for gener-
ating and storing per-pixel geometry aggregates in an aggregate G-
buffer, and then using the aggregates for efficient deferred shading
of aggregate detail.

3.1 Overview

Our technique operates within a four-stage renderer illustrated in
figure 4:

1. Dense Visibility Sampling (depth + compressed normals
prepass): render geometry, storing depth and compressed nor-
mals using n visibility samples per pixel.

2. Aggregate Definition: group surface samples visible in a
pixel into c aggregates by analysing per-sample depth + nor-
mal buffer.

3. Aggregate G-buffer generation: generate aggregate G-
buffer by rendering geometry and accumulating shading in-
puts into c aggregates per pixel.

4. Aggregate deferred shading: screen-space deferred lighting
pass(es) using the aggregate shading inputs.

These steps look very similar to the 4 stages of SBAA [Salvi and
Vidimče 2012] (which also requires a geometry pre-pass), never-
theless because the two algorithms make different assumptions, the
actual algorithm implemented by each stage is quite different. This
rendering pipeline supports both opaque and translucent geometry
through alpha-to-coverage.

Pixel frustum

Pixel

Pixel frustum

Pixel

Per-sample visibility
and shading attributes

Aggregate 0

Aggregate 1

Per-aggregate
shading

Figure 3: AGAA samples sub-pixel geometry and shading at-
tributes at high frequency, like what MSAA would do (left figure),
but shades at a much lower frequency, on a few statistical geometric
aggregates per-pixel (right figure), while preserving appearance.

3.2 Dense Visibility Sampling

The goal of the first step is to determine geometric visibility at per
sample granularity, as well as generating a per-sample normal in-
formation that will be used for clustering samples into aggregates
in the subsequent stage. We do so by rasterizing scene geometry
into a screen-space geometry buffer storing depth (standard depth
buffer) and a low-precision surface normal information (cf. lay-
out in figure 7) for each sample. We use a high multi-sampling rate
(e.g., 8×MSAA which is natively supported by the GPU, and up to
32 samples per pixel with emulation) to ensure the geometry buffer
captures the fine-scale geometric details.

In practice, the cost of the dense visibility pass is lower than the sub-
sequent full geometry pass (sampling all the attributes), since it only

Aggregate G-Buffer Anti-Aliasing - Extended Version 4

NDF
Mean albedo
Mean metal

AG-Bu�er

Pi
xe

l

2xAA

[2x Aggregates]

Deferred
Shading

AG-Bu�er
Generation

Raster pass 2

Blend

[8x Samples]

Depth
Prepass

Pi
xe

l

Depth

Raster pass 1

Early depth testing

Aggregate
Meta Data

[Per-pixel]

Aggregate
De�nition

 Face normal

1 2

3 4

…

Figure 4: Functional view of the 4 processing stages of the execution pipeline of the technique, together with the output of each stage and
their storage frequency.

requires to output primitive’s depth values (generated by the hard-
ware rasterizer) as well as the primitive’s normal (from the plane,
no normal map perturbation). In the case of transparent surfaces,
this pass does also sample the alpha map to determine coverage (cf.
section 3.6).

The outputs of this pass are a multisampled depth-buffer and a mul-
tisampled low precision normal buffer. Normals are encoded using
(θ, φ) spherical coordinates in pixel-space, and stored inside two
8-bit color components (RG8, cf. figure 7). Because we are us-
ing actual primitive normals, and primitives are back-face culled,
then only the visible hemisphere of normal directions needs to be
represented.

3.3 Aggregate Definition

The second step is to assign each of the n visibility samples to one
of the c aggregates (e.g., c = 2, 3, 4) using a clustering algorithm.
This is done within a compute shader pass (cf. implementation de-
tails in section 4) by using the per-sample depth and low-precision
normal information generated in the previous stage. The output
of the aggregate definition pass is mapping of samples to clusters
(that we call aggregates metadata). We encode this mapping using
d = n×log2(c) bits, with n the MSAA rate used for rasterizing the
geometry. Thus, in a 4-cluster configuration, the mapping requires
two-bytes per pixel when using 8x-MSAA (two bits per sample), as
shown in Figure 5.

Note that because many scenes contain an emissive skybox that
does not require shading, we exclude samples at the maximum
depth value from aggregate definition. Thus, the aggregate sam-
ple counts sum to less than n and measure the fractional coverage
by objects at finite distance from the camera.

3.3.1 Grouping criteria

The goal of this step is to segregate c-modal distributions of geom-
etry contributing to a pixel into c aggregates. In contrast to pre-
vious techniques like SBAA [Salvi and Vidimče 2012] or Stream-
ing G-Buffer Compression [Kerzner and Salvi 2014], which group
samples which belong to similar surfaces (with similar plane equa-
tions), our goal is to minimize errors dues to aggregation of sam-
ples with correlated attributes [Bruneton and Neyret 2011]. Con-
sequently, we have no restriction of minimum similarity between

primitives’ support planes, and we support aggregating samples
from different disjoint surfaces.

The shading model (based on pre-filtered attributes) accurately es-
timates the full lighting computation only when the values taken by
the different attributes are statistically independent [Bruneton and
Neyret 2011], meaning there should be no link between the proba-
bility of occurrence of one attribute and the probability of another
one. This is a standard hypothesis for all pre-filtering techniques,
including texture MIP-mapping. An example of such a correlation
is illustrated in section 6 (Figure 17-(a)). For instance, if within a
pixel there is a set of blue samples which are in shadow and another
set of red samples which are lit, then the correlation between the
shadowing and the albedo input parameters of the shading equation
will produce inaccurate results when filtering them.

Our goal is to assign samples to aggregates in a manner that reduces
the likelihood of highly correlated attributes. In practice, most is-
sues arise from correlation between the surface orientations (which
determines shading), as well as the shadowing, and the other at-
tributes. In addition, because the simple normal distribution model
that we use is uni-modal and isotropic (cf, section 4), a few dissim-
ilar normals can’t be represented precisely in the same aggregate
and we aim at avoiding this case.

Consequently, we designed the clustering algorithm to favor both
shadowing-based and orientation-based grouping of samples. Be-
cause the shadowing information is not available at cluster cre-
ation time, our algorithm favour distance-based grouping of sam-
ples, based on the assumption that shadowing discontinuities are
low enough frequency to be captured by spatial locality.

CS0 CS1 CS2 CS3

Byte 0

A0 A0 A1 A1 A0 A0 A1 A1 A0 A0 A1 A1 A0 A0 A1 A1

CS4 CS5 CS6 CS7

Byte 1

A0 A0 A1 A1 A0 A0 A1 A1 A0 A0 A1 A1 A0 A0 A1 A1

2-Bytes Aggregates Metadata (8x MSAA, 4 Aggregates)

Figure 5: Memory layout description for the per-pixel aggregates
Metadata information used for per-fragment aggregate selection.
In this example we use 8× MSAA rasterizaton and c = 4 aggre-
gates. CS0 − CS7 indicates the two bits (A0, A1) used to encode
the aggregateID associated to each of the 8 coverage samples.

Aggregate G-Buffer Anti-Aliasing - Extended Version 5

3.3.2 Clustering scheme

We cluster surface samples into aggregates using a fast O(n · c2)
algorithm that can be viewed as a crude approximation to princi-
ple component analysis (see Algorithm 1). In this algorithm, the
distance d between surface samples a and b is given by:

d(xyza, xyzb, n̂a, n̂b) = |(xyza − xyzb)/k|2 +
(1− n̂a · n̂b)

2
,

(1)
where constant k is the characteristic length of the scene. It cancels
the distance units and specifies the largest scale at which one ex-
pects important local detail, i.e., at which orientation differences
should give way to position differences. We used k = 10 cm
for our experiments. This distance function extends meaning-
ful semantics to the scale factor in Chajdas et al.’s [2011] and
Reshetov’s [2012] post-shading aggregating metrics.

Algorithm 1 Aggregate definition algorithm
1. Define c aggregates

(a) Read depth and normal for each screen-space sample.
Convert depth to position.

(b) Compute average position and normal of all samples
(c) Define first aggregate as sample, s0, that is farthest

from average (using distance metric based on position
+ normal) using Equation 1 to compute distance.

(d) Define second aggregate as sample, s1, that is farthest
from s0.

(e) Define each additional aggregate by finding the sample
with the largest sum of square distances from the exist-
ing aggregates.

2. Assign remaining visible samples to aggregates
(a) Assign each sample to the closest aggregate.

3. Store a sample mask for each aggregate

Note that in order to reduce shading workload to its minimum, we
create aggregates only if they are separated by a minimum distance
t from previously defined aggregates. Once the clusters are de-
fined, the algorithm classifies each sample as belonging to the near-
est cluster using distance function d.

3.4 Aggregate G-buffer Generation

The third step of the algorithm generates the aggregate G-buffer
by rasterizing scene geometry a second time, evaluating material
shader inputs at each visibility sample and combining these values
to compute a statistical model of the attribute’s value for each of
the c aggregates per pixel. Similarly to MIP-mapping based tech-
niques, which pre-filter the parameters of the shading function on a
surface, our technique assumes separability of the terms of the shad-
ing equation in order to average these attributes separately [Brune-
ton and Neyret 2011; Heitz and Neyret]. This requires that the
inputs of the shading function can be factored into linearly combin-
able terms, as we will discuss in section 4.3.

We compute aggregate’s values efficiently by rasterizing the scene a
second time at n×MSAA, using the depth buffer generated during
the visibility prepass (1). The depth-test is set to EQUAL and early
depth testing is enabled (evaluated before fragment shading) to en-
sure that only the samples visible in the prepass generate fragment
coverage and shader evaluation in a pixel. The resulting fragment
uses the aggregates metadata information to select the aggregate
the current fragment contributes to, then blends its contribution into
the frame-buffer element corresponding to the aggregate. In order
to maximize the performance of this step, and allow flexible storage

formats, we rely on the hardware color blending to perform the ad-
ditive accumulation of the attributes. Pseudocode for the G-buffer
generation pass is given in Algorithm 2, and further details about
it’s implementation on modern GPUs is discussed in Section 4.2.

3.4.1 Pre-filtered attributes

G-buffer shading parameters are application-specific. We build sta-
tistical distribution information for each shading attribute, in order
to account for the discrepancy during the shading (cf. next section).
We chose to model this statistical information as the first (mean)
and second (variance) moments of a Gaussian distribution. In prac-
tice, we only construct these distributions for the normal directions
and the sub-pixel position of each aggregate, and we only retain the
first moment (average) of the other attributes.

Depending on the shading model (cf. Section 3.5), we handle
normal distributions using either the Toksvig [2005] approxima-
tion (for isotropic normal distributions) or for anisotropic normal
distributions, the LEAN mapping distribution [Olano and Baker
2010] or the SGGX (Symmetric GGX) distribution [Heitz et al.
2015]. Other distribution schemes such as cLEAN [Baker 2011]
and LEADR [Dupuy et al. 2013] could also be used. While the stan-
dard usage of such normal distribution is to model micro-geometry,
we use it to model both micro- and meso- scale geometric distri-
butions, coming from texture details as well as real triangle-based
geometry.

We don’t explicitly store the roughness (or Blinn-Phong’s specular
exponent), but instead rely on the Toksvig representation to encode
it directly, which also has the advantage of being linearly filterable.
A position distribution is used to define the shape of the aggregate.
It is specified as a mean depth and a variance, and it is necessary for
taking into account the variance of light source directions during lo-
cal shading estimation (particularly important in case of aggregates
elongated in depth, and close light sources), as well as for filter-
ing the shadowing term of the shading function (ie. filtering the
shadow map), as explained later. In practice, this is re-constructed
from the depth value and sub-pixel position of the samples inside
an aggregate.

3.5 Deferred shading

The deferred shading stage can be implemented using any screen-
space deferred lighting technique (full-screen pixel shader, GPU
compute shader, per-light bounding box rasterization, etc.). In
contrast to traditional G-buffered shading, which performs shad-
ing once per pixel, or once per sample, our system shades once per
aggregate.

Although in the worst case AGAA performs n/c fewer surface
shader evaluations than a system using supersampled shading, these
evaluations are more costly. (see Section 5.3). After shading, the
result shaded color for each aggregate is weighted by its relative
sample count, and then all shading results are composited together
and over the background image.

3.5.1 Shading models

The algorithm is independent of the shading model. For most of
our experiments, we use the Blinn-Phong shading model, and we
compute the pre-filtered shading for the Diffuse (Lambertian) and
Specular components separately. We also tested the GGX specu-
lar distribution [Walter et al. 2007], which is becoming the indus-
try standard for real-time rendering engines [Karis 2013; Lagarde
and De Rousiers 2014; Schulz 2014]. Other analytic microfacets

Aggregate G-Buffer Anti-Aliasing - Extended Version 6

Depth
Test

Fragment
Shader

Blend
(ADDITIVE)

Raster Prim. Coverage

Depth

*Post-depth
coverage

Fragment output
attributes

8x MSAA

*Output coverage
(routing)

…

NDF
Mean albedo
Mean metal

AG-Bu�er 2xAA

Aggregate
Meta Data

Depth bu�er

Figure 6: Functional view of the hardware target-independent rasterization pipeline used for aggregate G-buffer generation. In this example,
the rasterizer generates 8 coverage and depth samples, and the resulting AG-buffer contains two samples, one for each aggregate. Elements
marked with a star require specific Maxwell features.

distributions and BRDF models could also be used, as long as pre-
filtering schemes exists, and their input parameters can be linearly
pre-filtered [Bruneton and Neyret 2011; Olano and Baker 2010].

3.5.2 Aggregate shading

Shading an aggregate is very similar to shading a MIP-mapped and
bilinearly-filtered sample from a single surface and material [Olano
and Baker 2010; Han et al. 2007; Olano and North 1997; Fournier
1992b; Fournier 1992a]. Similar to this use case, and in con-
trast with volumetric pre-filtering [Heitz and Neyret ; Crassin et al.
2009], there is no need for filtering visibility since we rely on the
geometry pre-pass to aggregate visible attributes.

We approximate pre-filtered shading for Blinn-Phong or GGX spec-
ular reflectance using the Toksvig [2005] Normal distribution, be-
cause of its compactness and evaluation efficiency. Toksvig’s dis-
tribution approximates the variance in the normal directions from
the length of the stored 3D normal vector (length varies inversely
with the variance of the orientation of the surfaces). We follow
Toksvig in using that variance as an effective way to filter specular
reflectance by increasing the roughness, e.g., lowering the Blinn-
Phong’s glossy exponent term.

Toksvig’s approach was designed only for the Blinn-Phong re-
flectance. We apply the following simple steps in order to apply
it to the filtering of GGX specular reflectance: (1) Convert the orig-
inal GGX roughness r into Phong specular exponent s = 2

r2
− 2.

(2) Compute Toksvig factor ft = |Na|/(|Na|+ s(1− |Na|)) us-
ing the Toksvig vector Na stored for an aggregate. (3) Update the
Phong specular exponent s′ = ft ∗ s. (4) Convert specular expo-
nent back to a GGX roughness r′ =

√
2/(s′ + 2). (5) Finally use

updated r′ to compute specular shading for the aggregate.

Note that for filtering specular reflectance, we also tested the
anisotropic LEAN [Olano and Baker 2010] and the SGGX [Heitz
et al. 2015] distributions for GGX specular reflectance. Both
propose an analytic form for evaluating the filtered specular
reflectance, and provide higher quality in case of important
anisotropy in the surface orientations (cf. Section 5.1).

There are three important differences with surface-based filtering in
our case. First, filtering the specular reflectance is not enough, since
variations in the sub-aggregate surfaces orientations can also lead
to important differences in the diffuse shading as shown in [Dupuy
et al. 2013]. We follow [Baker and Hill 2012] analytic approxima-
tion for filtering the diffuse component from the Toksvig isotropic
distribution. We also tested the simple numerical evaluation pro-
posed with the SGGX anisotropic distribution(cf. Section 5.1).
Second, because the support geometry for these attributes can
spread large depth extents per-pixel, the shadowing term must also

be filtered. This problem will be discussed in the next section. Fi-
nally, very large depth discrepancy within an aggregate can induce
potentially important light direction discrepancy in case of nearby
light sources. This case can be accounted for by re-injecting, for
each light source, the variance of light directions as additional vari-
ance in the normal distribution. However in practice, this effect
appear very limited, thanks to our clustering scheme which tends to
avoid such elongated aggregates (cf. section 3.3).

3.5.3 Shadowing

Among local shading terms, shadowing also needs to be filtered in
order to account for differences of light visibility within a given ag-
gregate. This is done independent of the initial number of visibility
samples included within each aggregate. The idea is to sample the
visibility within the shadow-map inside the shape of the aggregate,
which is statistically defined by the mean and variance of the depth
value. In practice, we reconstruct the world-space 3D position and
variance vector, and project them inside the shadowmap to sam-
ple within this footprint using a fixed number of samples (usually
3-4 taps, or using hardware anisotropic filtering). Even though it
is generally not necessary in practice, a more precise filtering can
be obtained by reconstructing the anisotropic ellipsoid shape of the
aggregate from the 3D world-space position of each sample (recon-
structed from the depth value and sub-pixel location of the sample).
This can be done by computing the 3D covariance matrix represent-
ing the statistical distribution of positions within the aggregate.

Instead of numerically sampling the shadowing term, shadow-map
pre-filtering techniques [Donnelly and Lauritzen 2006] could also
be used in order to de-correlate even more the cost of shadowing
from the extent of the aggregate that we are shading. We haven’t ex-
plored this direction, but this is definitely an interesting future work.
In case of strong correlation between shadowing and other param-
eters, it is also possible to evaluate the shadowing per-sample, dur-
ing the G-buffer generation pass, and pre-multiply the per-sample
albedo and specular coefficients by the shadowing term before ag-
gregating them. However, such an approach makes the shadowing
cost scaling with the number of samples, which is not desirable,
especially when n is large, or many lights need to be evaluated.

3.6 Handling transparency

Because it supports high sampling rate visibility, our technique
is compatible with stochastic rasterization techniques [Akenine-
Möller et al. 2007; McGuire et al. 2010] and hardware alpha-to-
coverage conversion [Kirkland et al. 1999]. Our implementation
rasterizes fine-detail geometry modelled using alpha-textured poly-
gons (e.g., the leaves of the trees in Figure. 1) as well as translucent
primitives, using alpha-to-coverage. Since visibility is determined

Aggregate G-Buffer Anti-Aliasing - Extended Version 7

during the geometric prepass (cf. Section 3.2), sampling of the
alpha texture and coverage generation only need to be performed
during this pass. Aggregate definition (clustering) is performed
similarly for stochastically generated samples and samples from
standard opaque geometry. During AG-buffer generation, depth-
testing (which uses the depth-buffer from the prepass) ensures that
the right coverage, generated in the prepass, is used for aggregation.
Similarly to deferred shading of aggregate MSAA samples from
solid objects, aggregate deferred shading from stochastic sampling
of semi-transparent primitives allows greatly reduced shading rate
while preserving good image quality (cf. Section 5.1).

4 GPU Implementation and Optimizations

In this section, we discuss some important details for the efficient
implementation of this algorithm on the GPU.

4.1 Accelerating aggregate definition

The clustering algorithm in Section 3.3 assumes that surface depth
and normal information is stored per sample as a result of rasteri-
zation in pass 1. The cost of this algorithm scales linearly with the
number of samples n. This can be excessively expensive when n is
large, but the actual geometric complexity of a pixel is low.

However, many modern GPUs implement depth-buffer compres-
sion mechanisms, which store plane equations and coverage masks
for visible triangles within a screen tile, as opposed to explicit depth
samples (See Hasselgren and Akenine-Möller [2006] for a good de-
scription of a modern depth compression implementations). When
the depth buffer is stored in such a form that directly represents
the p ≤ c triangles in a tile, aggregate definition can be accel-
erated by operating directly on the compressed representation, in-
stead of individual samples. That is, when geometric complexity in
a screen region is low, the cost of constructing aggregates for this
region can be reduced. For all other tiles, we rely on the cluster-
ing algorithm described in section 3.3, using per-sample depth and
low-precision normal information. This optimisation is particularly
useful for high MSAA rates, above 8×MSAA.

4.2 Target-independent rasterization into the aggre-
gate G-buffer

The aggregate G-buffer generation algorithm, described in Algo-
rithm 2 and illustrated in Figure 6, rasterizes the scene using n
MSAA samples, while the filtered attributes associated to the c per-
pixel aggregates are stored in a set of color render targets with c
MSAA samples. We rely on target independent rasterization, a fea-
ture available through the NV framebuffer mixed samples
OpenGL extension [NVIDIA 2014] to enable the GPU to raster-
ize and perform depth-testing at higher sampling rate than the des-
tination color targets. For each fragment shader execution, only
one of the c target aggregates is selected using the aggregate se-
lection scheme (Algorithm 2), in order to accumulate the frag-
ment’s attributes. This is achieved by routing the shader out-
put to a given aggregate by modifying its coverage mask (see
the NV sample mask override coverage OpenGL exten-
sion [NVIDIA 2014]).

4.2.1 Visibility-based scaling of attributes

To correctly account for visibility we must accumulate the fragment
shader’s attributes after scaling them by the number of visible sam-
ples. We do so by first configuring the graphics pipeline to perform
an early depth-test, exploiting the depth buffer generated during the

Algorithm 2 G-buffer generation algorithm
1. Set rendering states:

(a) Disable depth writes and set depth test to EQUALS
(b) Enable early depth-test and post-depth coverage
(c) Enable stencil test to keep only the first sample passing

depth test
(d) Enable additive blending on G-buffer storage buffers

2. Render scene. For each fragment, find its aggregate and visi-
ble samples:

(a) ReadMf , coverage mask of fragment’s visible samples
(b) Read Da, aggregates meta-data for the pixel
(c) Find AggregateID by :

i. finding Sid = firstNonZeroBit(Mf)
ii. AggregateID = (Da � (Sid ∗

MAX BITS AGGREGATE ID)) &
(MAX NUM AGGREGATES − 1)

3. Compute G-buffer terms identical to traditional deferred ren-
dering. Optionally compute LEAN mapping terms for nor-
mals.

4. Weight G-buffer terms by fractional coverage from Mf .

5. Route G-buffer results to theAggregateID sample in output
color buffers.

prepass to discard occluded samples. Second, we configure the in-
put coverage mask provided to the fragment shader (into which we
perform the scaling) to only contain the samples passing the depth
test (see the EXT post depth coverage extension [NVIDIA
2014]).

4.2.2 Enforcing one primitive value per sample

Because aggregate values will need to be re-normalized by the num-
ber of samples in their effective coverage mask before shading, it
is important to ensure that no more than one primitive contribute to
the same sample. Even with the depth-test of the generation pass
set to EQUAL, such a situation can happen in case of Z-fighting,
when more than one fragment’s depth value pass the depth test for
a given sample (because they are the same). This would produce
noise artefacts and it can be avoided in a consistent way by using
the stencil test to only keep the first sample value passing the depth
test. This is done simply by incrementing stencil value by one on
depth-pass, and discarding on stencil ≥ 1.

4.3 Aggregate G-buffer memory layout

Current practice in the video games industry tends to use a Blinn-
Phong shading model for deferred shading, storing at least an RGB
albedo value for the diffuse term, one for the specular term (metal),
a roughness coefficient (reciprocal of the Phong’s glossy exponent),
a scalar emissive coefficients and a normal encoded as 2D spher-
ical coordinates. These G-buffer layouts range from 12 bytes to
41 bytes per sample (including depth) [Filion and McNaughton
2014; Tatarchuk et al. 2013; Mittring 2012; Andersson 2011; Cof-
fin 2011; Kasyan et al. 2011; Filion and McNaughton 2008; Valient
2007], with ≈ 20 bytes apparently the most common on PC.

For the sake of our feasibility demonstration, and in the case of
Blinn-Phong shading, we chose to encode attributes corresponding
to the 16 bytes layouts presented in figure 7-top, which we consider
as representative of a real game engine scenario (within the lower
bound of the memory requirements).

For AGAA, we rely on the same set of parameters, which we need

Aggregate G-Buffer Anti-Aliasing - Extended Version 8

Depth + Stencil Depth + Stencil D24_S8

Normal Normal RG16F

Albedo Albedo RGBA8 Emissive Emissive

Metal RGBA8 Roughness

Pe
r-

 s
am

pl
e

(a) G-Buffer layout

(b) AG-Buffer layout

R8

Depth + Stencil Depth + Stencil D24_S8

RGBA16

Albedo Albedo RGB10

CbCr Metal CbCr Metal RG8

Y’ Metal Y’ Metal

Emissive Emissive Pe
r-

 a
gg

re
ga

te

Normal distribution (Toksvig) Normal distribution (Toksvig)

Face Normal (θ, φ) Face Normal (θ, φ) RG8

Pe
r-

 s
am

pl
e

Covg. 0 Covg. 0 R8(/R16/R32) Covg. 1 Covg. 1 Covg. 2 Covg. 2

Figure 7: G-buffer layouts we use for classical deferred MSAA
(top, 16 bytes per sample) and AGAA (bottom, 16 bytes per aggre-
gate + 6 bytes per sample). Actual number of bits used for coverage
information depends on MSAA rate used for rasterization.

to represent as filtered attributes for each aggregate (cf. section 3.5).
We use the aggregate G-buffer layout presented in figure 7-bottom.
It encodes the normal distribution using Toksvig’s normal vector as
RGB16 (normalized, fixed point), the material albedo as RGB10,
the specular coefficient in Y’CbCr color space, using 16b Y’ and
8b Cb and Cr, and the emissive coefficient as R8.

We chose to use fixed-point color formats for increased precision.
In order for the additive blending accumulation to work, all accu-
mulated values (generated per-fragment) must be pre-normalized in
the fragment shader by the total number of samples per-pixel. One
could also use floating point color formats.

Unlike traditional G-buffers, ours do not store explicit roughness
(i.e., the BRDF’s glossy exponent term) directly but instead inject
it as additional variance inside the normal distribution. We save
G-buffer memory by not explicitly storing the distribution of po-
sitions. This is instead computed per aggregate from the multi-
sampled depth buffer during the deferred shading pass.

Because there can be mismatches between per-sample clustering
(maintained by the aggregates metadata) and the fragment values
actually accumulated, a sample counter must also be maintained
to allow the re-normalization of the attributes. We keep this infor-
mation as a per-aggregate coverage mask, which is also used for
reconstructing the distribution of positions.

4.4 Hardware Emulation of High MSAA rates

Most current GPUs only natively support MSAA rates up to 8×
MSAA. In order to reach higher sampling rates, we designed an
hardware-based emulation scheme which allows generating more
than 8 MSAA samples within a single geometric rendering pass.
The general idea is to use hardware to rasterize each triangle mul-
tiple times at 8× MSAA, offsetting screen-space position at each
rasterization pass in order to sample different locations on the prim-
itives. For instance, we emulate 32× MSAA with 4 rasterization
passes at 8×MSAA, as illustrated in figure 8. In contrast to raster-
izing at higher pixel resolution (supersampling), this ensures that
generated fragments get correct screen-space derivatives, and that
texture samples exactly match those of a native MSAA implemen-
tation at the emulated rate.

We perform this rendering in a single geometric pass, and avoid
using a costly Geometry Shader (required to duplicate each prim-
itive), by taking advantage of viewport multicasting, a feature
available on NVIDIA Maxwell (and newer architectures) through
the NV viewport array2 OpenGL extension [NVIDIA 2014].
This allows a single primitive to be transformed once by the vertex
pipeline, and to be broadcast automatically, right before rasteriza-
tion, into multiple layers of a layered framebuffer, and to be ras-
terized independently into each of them. The layered framebuffer
contains 2D array textures (stack of 2D layers) instead of simple
2D textures, and each layer stores the depth, geometric normal (for
the visibility prepass) or aggregate values for one of the 8×MSAA
rasterization pass. After using this emulation during the AG-buffer
generation pass, these multiple values generated for each aggregate
are merged together, before executing the deferred shading step.

Pixel footprint

1 2

3 4

Figure 8: Emulation of 32× MSAA rasterization for a single tri-
angle. Original triangle (in purple) is rasterized 4 times using 8×
MSAA (red dots), with fractional offset viewport positions. Pro-
grammable sample location is used to position samples in the top-
left quadrant of each pixel.

In order for the all the samples rasterized through the multiple
passes to be uniformly spread inside each pixel, thus capturing dif-
ferent geometric information, sample locations need to be changed
at each pass. These locations cannot be set independently for each
rasterization pass during viewport multicasting. However, each
layer has a separate viewport definition associated, which can spec-
ify a fractional viewport position used to compute Normalized De-
vice Coordinates during the viewport transform stage. This allows
us to specify a per-layer sub-pixel offset to the primitives, result-
ing in an equivalent (negative) offset of the base hardware sample
positions.

Base hardware sample positions are chosen such as this per-pass
offsetting properly distribute samples inside each pixel’s footprint.
We use the new programmable sample location feature, exposed in
NV sample locations [NVIDIA 2014], to define the subsam-
ples positions used for each pixel. In the example shown in figure 8,
we emulate 32× MSAA by positioning the 8 MSAA samples in-
side the top-left quadrant of each pixel, while offsetting the layers’
viewports by half a pixel in each direction. Other sample location
patterns and viewport offsets could be used, in order to provide bet-
ter quality sample distributions. For good quality, samples must be
distributed as much uniformly as possible, avoid alignments result-
ing in correlation artefacts, and viewport offsets must keep samples
inside each pixel’s footprint.

Aggregate G-Buffer Anti-Aliasing - Extended Version 9

2x
 d

i�
. w

ith
re

fe
re

nc
e

SBAAAGAAReference
1 S 2 S 3 S 4 S1 C 2 C

1

2

3

2x
 d

i�
. w

ith
re

fe
re

nc
e

2x
 d

i�
. w

ith
re

fe
re

nc
e

8x MSAA

Figure 9: Image quality comparison between Aggregate G-buffer Anti-Aliasing (AGAA) and Surface-Based Anti-Aliasing (SBAA) [Salvi and
Vidimče 2012] for 1 to 4 surfaces per pixel. Each zoomed picture correspond to one of the crops in Figure1. Note that AGAA with 2 aggregates
exceeds the quality of SBAA with 4 surfaces.

5 Evaluation

We evaluate the performance and quality of AGAA on five scenes
(Figure 15), chosen to challenge both our algorithm and prior work.
Old City is a game-like scene that has intricate railings, furniture,
and complex foliage. Foliage is a scene from a Epic Unreal Engine
3 demo. The foliage in these two scenes is composed of geomet-
ric and translucent alpha-mapped parts (cf. section 3.6). Furball
(Figure 16-top) exhibits fine-scale geometry far beyond that used
in video games today. Finally, the metal scene (Figure 16-bottom)
contains many thin metal tubes (highly tessellated geometry). It
presents the challenge of building suitable geometric aggregates for
highly-curved specular surfaces.

All results have been produced at the resolution of 1280x720 on an
NVIDIA GTX 980 graphics processor (Maxwell GM204) using an
OpenGL implementation of the algorithm described in Section 3.
Unless stated otherwise, we used the Blinn-Phong shading model
and a Toksvig Normal distribution for these experiments. We com-
pare our technique to the simple/complex optimization of Lauritzen
et al. [2010] for deferred shading, which we configured to ensure no
quality degradation compared to brute-force per-sample shading.

The presented technique runs natively on current Maxwell hard-
ware. However, for optimal performance above 8×MSAA, we rely
on the ability to access the compressed representation of the depth
buffer presented in Section 4.1, which is not currently exposed by
OpenGL. Our implementation emulates this ability, and therefore
does not account for the cost of this emulation in the 16× and 32×
MSAA results. If this feature were supported natively, using the
depth plane information would not add any additional runtime cost.

5.1 Image Quality

5.1.1 Video game and artificial scene

Figure 9 compares the rendered output of AGAA against that of
two alternatives: super-sampled shading of each visibility sam-
ple (which we consider a high-quality baseline) and the Surface-
Based Anti-Aliasing (SBAA) method of Salvi et al. [2012] config-
ured to use its highest quality “merge” clustering predicate. We
plot the per-pixel differences between AG-buffer and SBAA ren-
derings (magnified by a factor of 2) against that of the baseline
per-sample shading. Figure 16 provide a similar analysis on more
artificial, but higher complexity scenes and higher sampling rates,

Aggregate G-Buffer Anti-Aliasing - Extended Version 10

with the number of shading computations per pixel (number of Ag-
gregates/Surfaces) varying from 1 to 4.

Generally AGAA provides higher image quality than SBAA when
using the same number of shading events per pixel, and it is not
unusual that even with 4 surfaces per pixel, SBAA quality is lower
than AGAA with 2 surfaces per pixel. As expected, the image qual-
ity of both approximations increases with the number of shaded
aggregates (surface clusters in the case of SBAA), but we find that
the AGAA results more closely match those of the baseline.

Our experiments indicate that when rendering intricate geometry
such as foliage, hair, or the detailed furniture forms in Old City,
two aggregates per pixel are sufficient to produce visually pleasing
results. We also found that even though the AGAA results may not
match that of the baseline implementation, the results generally ex-
hibit more temporal stability than the SBAA results. We invite the
reader to inspect the accompanying video to further assess AGAA
temporal stability.

5.1.2 Highly specular surfaces

The benefits of aggregating statistics from all elements contributing
to a pixel, as opposed to a select few, is particularly apparent when
rendering specular surfaces (Figure 16-bottom). By modeling the
distribution of normals featured on the scene’s thin, high-curvature
metal rods, shading using the AG-buffer is able to approximate the
specular highlight well. The SBAA output exhibits severe aliasing,
even when shading is evaluated four times per pixel. Note that for
this scene, we used the anisotropic LEAN normal distribution in-
stead of Toksvig. Generally, AGAA specular quality and temporal
stability is dependent on the precision of the Normal Distribution
Function, especially for complex arrangements of primitives, which
can lead to anisotropic or multi-modal distributions.

5.1.3 GGX specular reflectance

We also evaluated image quality obtained when using the GGX
specular reflectance model (instead of Blinn-Phong, cf. Sec-
tion 3.5.1), which is widely used in recent game engines. Figure 10
shows image quality obtained with AGAA, using the Toksvig and
the SGGX distributions as described in Section 3.5.2, as well as dif-
ference with per-sample shading ground-truth. Similarly to Blinn-
Phong BRDFs, our approach approximates lighting of thin, high-
curvature elements with GGX BRDFs relatively well when com-
pared to the super-sampled reference. In presence of very elongated
specular elements with anisotropic curvature, such as the tubes of
metallic furnitures, the SGGX distribution gives better results than
the isotropic Toksvig distribution, thanks to its anisotropic repre-
sentation.

4x
 d

i�
. w

ith
re

fe
re

nc
e

AGAAReference
Toksvig SGGX8x MSAA

Figure 10: Quality comparison for GGX specular reflectance
using the isotropic Toksvig normal distribution function and the
anisotropic SGGX distribution.

5.1.4 Diffuse reflectance using SGGX distribution

As described in Section 3.5.2, we also pre-filter diffuse shading
per-aggregate using the Normal Distribution Function. We com-
pared the image quality for diffuse shading when using the isotropic
Toksvig normal distribution function [Baker and Hill 2012], with
the quality obtained with the anisotropic SGGX distribution using
the numerical integration scheme proposed in [Heitz et al. 2015]
(cf. Section 3.5.2). Image comparison with amplified per-pixel dif-
ference is shown in Figure 11. As expected, SGGX provides higher
quality results than Toksvig where geometry exhibits important
anisotropy. However, SGGX tends to generate slightly smoother
results than the reference in other regions, which leads to a slight
loss of contrast.

8x di�. with
reference

AGAAReference
Toksvig SGGX8x MSAA

Figure 11: Quality comparison for diffuse shading using isotropic
Toksvig distribution and anisotropic SGGX distribution on elements
with a high anisotropic curvature.

5.1.5 High sampling rates

Although the aggregate G-buffer enables the renderer to evaluate
shading more sparsely while still preserving image quality, it does
not eliminate the need for dense sampling of scene visibility. Fig-
ure 12 compares the quality of AGAA shading to the baseline as
the visibility sampling rate is increased from 4 to 32 samples per
pixel. These results were produced using the emulation presented
in Section 4.4. Although the AGAA shading rate stays constant (3
aggregates/pixel), the output quality of the AGAA images improves
with the visibility sampling rate, because dense sampling results in
more small primitives captured and contributing to each pixel.

5.2 Shading rate reduction

In Figure 13, we show the reduction of the average number of
shading events executed per-frame (independently of the cost of
these events) provided by AGAA (with c = 2 and dynamic num-
ber of aggregates) on the Old City scene, in comparison to the
simple/complex approach [Lauritzen 2010] and SBAA [Salvi and
Vidimče 2012] (with S = 6).

On average, the actual shading rate achieved by AGAA is less than
25% of the simple/complex approach, and 45% of SBAA. SBAA
requires up to 6 surfaces per-pixel to reach similar image qual-
ity, which also results in almost 2× the memory consumption of
AGAA. The per-pixel analyse shows that SBAA is relatively inef-
ficient in terms of shading execution on the GPU. This is due to
the large pixel-to-pixel discrepancy in the shading rate (1-6 shad-
ing executions), which entails a worst case execution at the SIMD
granularity. As shown in Figure 13, AGAA behaves much better in
this respect, thanks to the much lower worst case pixel shading rate.

Aggregate G-Buffer Anti-Aliasing - Extended Version 11

Time (ms) AGAA - 2A Reference Speedups
8×MSAA Geom-

prepass
Aggregate
Def.

Gen. Shading Total Simple/
Complex

Gen. Shading Total Shading Frame

Old City 2.61 0.60 3.80 3.60 10.61 5.73 0.41 10.24 16.38 2.84× 1.54×
UE3 FoliageMap 2.00 0.60 2.47 3.67 8.74 4.35 0.41 10.45 15.21 2.85× 1.74×

Bamboo 3.75 0.88 4.14 4.26 13.03 4.69 0.39 14.9 19.98 3.50× 1.53×
Metal 2.02 0.73 2.43 0.99 6.17 3.51 0.45 2.44 6.40 2.46× 1.04×

Fur Ball 1.90 0.71 1.84 0.39 4.84 3.56 0.49 0.81 4.86 2.08× 1.00×
32×MSAA

Old City 10.38 2.74 15.80 4.80 33.72 30.80 3.70 31.10 65.60 6.48× 1.95×
UE3 FoliageMap 9.21 2.16 13.24 5.02 29.63 24.70 3.70 46.34 74.74 9.23× 2.52×

Bamboo 9.06 3.53 13.94 12.21 38.74 19.89 3.36 74.9 98.15 6.13× 2.53×
Metal 6.84 1.87 8.61 1.54 18.86 10.70 2.90 6.54 20.14 4.25× 1.07×

Fur Ball 8.26 1.84 10.48 0.87 21.45 16.54 2.92 1.94 21.40 2.23× 1.00×

Table 1: Runtime performance (in milliseconds) for the main steps of AGAA (c = 2) at 8×MSAA (top) and 32×MSAA (bottom) for various
scenes, compared to the Simple/Complex deferred-shading technique used as a reference. The most right columns show the speed-ups
provided by AGAA on the shading pass only and on the entire frame.

4x visibility spp 8x visibility spp 32x visibility spp

Per-sample shading

AGAA shading (3 aggregates/pixel)

Visible triangle count

Figure 12: Increase of visibility sampling rate allows capturing
more triangles per-pixel (bottom row), which benefits to both tradi-
tional super-sampled rendering (top) and aggregate G-buffer ren-
dering (middle), with more accurate and stable results.

5.3 Execution performance

Table 1 shows execution performance numbers of AGAA for vari-
ous scenes we have tested (Fig. 15), as well as speed-ups relative to
the Simple/Complex approach [Lauritzen 2010] (setup for no qual-
ity degradation). We show performance results for both 8× and
32×MSAA and a maximum of two aggregates (c = 2). 8×MSAA
is the highest MSAA rate natively supported by current GPU hard-
ware. For 32×MSAA, we rely on the emulation procedure detailed
in Section 4.4. All scenes feature one main shadowed light as well
as 16 secondary point light sources, which we consider as a realistic
number for representing the workload exercised by a modern game
engine. The only exception is the Furball scene which uses only

Number of shading
events executed :

AGAA - 2ASimple/Complex SBAA - 6S

8x MSAA 8

1

Figure 13: Shading events measurement and comparison at iso-
quality between per-sample Simple/Complex deferred shading (ref-
erence), AGAA (c = 2) and SBAA (S = 6), using 8× MSAA.

one non-shadowed light source. We used the Blinn-Phong shading
model for these experiments. We observed ∼ 10% higher speed-
ups on the deferred shading pass when using the GGX specular
shading model with the Toksvig distribution.

AGAA is constantly faster than Simple/Complex, despite the cost
of the additional Z-prepass that we need to perform. This cost is
mostly compensated by a faster geometric generation pass. This
pass benefits from both the early depth culling, and the bandwidth
reduction to the video memory made possible by the reduction of
per-pixel data in the aggregate G-buffer. Because it performs at
most two (even though more costly) shading events per pixel, most
of the speed-up of our technique comes from the shading pass. For
the scenes we tested, it is at least 2× faster and up to 3.5× faster
than the Simple/Complex per-sample shading at 8× MSAA. At
32× MSAA, the speed-up for the shading pass reaches 9.2×. The
execution time of the shading pass is increased by the computation
of the depth distribution information used by the pre-filtered shad-
ing. This information could also be aggregated on the fly like other
attributes, at the cost of a slightly higher memory consumption. On
the entire frame, we observe up to 74% speed-up at 8×MSAA, and
up to 156% at 32×MSAA.

At 32× MSAA, because of the emulation, the AG-buffer gener-
ation pass generates, for each of the final aggregates, 4 separate
sets of sub-aggregate values that need to be merged together be-
fore shading. In addition to the cost of the emulation (measured
inside the geometric pre-pass and the AG-buffer generation pass),

Aggregate G-Buffer Anti-Aliasing - Extended Version 12

37

63

77

89

31

52
59

66

28

46
50

54

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4

%
 m

em
 re

la
tiv

e
to

 G
-B

u�
er

Number of Aggregates

AGAA Memory Usage
8x MSAA 16x MSAA 32x MSAA

67

78

89

100

62
67

73
78

59 62 64 67

0

20

40

60

80

100

120

1 2 3 4

%
 m

em
 re

la
tiv

e
to

 G
- B

u�
er

Number of Surfaces

SBAA Memory Usage - MERGE
8x MSAA 16x MSAA 32x MSAA

Figure 14: Memory consumption of AGAA and SBAA in MERGE
mode in percent relative to full multisampled G-buffer, depending
on number of aggregates/surfaces and for 8×/16×/32× rendering.
Includes all required per-sample and per-aggregate storages.

the cost of this merging procedure represents around 5% of the total
frame time, and is integrated into the shading pass. Native support
for 32× MSAA would save both of these overheads, resulting in
higher speed-ups.

5.4 Memory consumption

We analyzed the memory requirement of AGAA relative to a stan-
dard G-buffer implementation and to SBAA. Results are shown in
figure 14. For AGAA, we used the 16B/Aggregate + 6B/sample
AG-Buffer layout described in section 4.3, with the corresponding
16B/sample layout for classical G-buffer. We believe that this is
somehow representative of what a modern game engine would use.
In addition to the AG-Buffer layout, AGAA requires n × log2(c)
(n MSAA rate, c number of aggregates) additional bits per pixel as
metadata for clustering (cf. section 4.1). SBAA requires a 1B addi-
tional primitive ID per sample, plus 2B of surface data per surface.

Globally, with c = 2, the benefit of AGAA in terms of memory is
a little under 40% at 8× MSAA, and almost 50% at 16× MSAA.
AGAA requires also ∼20% less memory than SBAA for two ag-
gregates and two surfaces. In addition, in the relatively complex

scenes we analysed, AGAA with c = 2 achieves nearly the same
image quality (cf. section 9) as SBAA with S = 4, which corre-
sponds to a ∼37% memory reduction.

6 Limitations

Similar to other pre-filtering techniques ([Bruneton and Neyret
2011]), our algorithm doesn’t produce accurate results in the pres-
ence of important correlation between the values taken by indepen-
dently filtered parameters inside the same aggregate. Figure 17 (a)
is a typical manifestation of this issue when using only one ag-
gregate per-pixel. Halos are visible around the leaves of the tree
because samples from the red wall, which is mostly in shadow, are
filtered together with samples from the leaves of the tree, which are
mostly lit. This improperly induces the shading of a yellowish av-
erage material which is semi-shadowed. Note that this issue would
not arise here without shadowing, or if the sets of correlated sam-
ples were split into separate aggregates (here only one aggregate is
used). From our experience, this kind of correlation effect is rarely
visible when using at least two aggregates per pixel.

In some situations, our technique also fails to accurately model and
preserve appearance of sub-pixel geometry inside the aggregates.
This is true in case of long and thin geometry, like the thin hairs in
Figure 17 (b), which at some scales require an anisotropic normal
distribution, like SGGX or LEAN, which are more costly to store
and evaluate. This is more of an issue in presence of structured ge-
ometry, which generates multi-modal normal distributions that we
can’t represent precisely, like the railings in Figure 17 (c). This
problem appear only in presence of a few (2-3) lobes in the normal
distribution, and can generate high-intensity noise. This issues is
also rarely visible in practice when using at least two aggregates
per pixel, thanks to our aggregate definition scheme (Section 3.3)
which limit this effect by taking into account the normal direction
for clustering. However, the problem of designing efficient and fil-
terable multi-modal normal distribution functions remains open for
future works.

AG
A

A
 2

A
AG

A
A

 1
A

M
SA

A
AG

A
A

 2
A

M
SA

A
AG

A
A

 1
A

(a) (b) (c)

Figure 17: Three failure cases for our filtering technique.

7 Conclusion

This paper introduced Aggregate G-buffer Anti-Aliasing (AGAA),
a technique to improve anti-aliasing of fine geometric details in de-
ferred renderers, by allowing high geometric sampling rates. It is
based on a new mechanism to decouple light shading rate from the
geometric sampling rate. The primary contribution is a fully dy-
namic screen-space algorithm that efficiently aggregates material
properties across disjoint surfaces. We demonstrated that storing
and shading only 2 to 3 aggregates per pixel is sufficient for a wide
range of scenes, irrespective of the number of visibility samples per
pixel (i.e., the MSAA rate). Our technique approaches the qual-
ity of super-sampled shading at a substantially lower memory and
compute cost, especially for effects such as specular highlights, by
pre-filtering shader inputs during aggregate generation.

Aggregate G-Buffer Anti-Aliasing - Extended Version 13

O
ld

 C
ity

U
E3

 F
ol

ia
ge

 M
ap

Ba
m

bo
o

M
et

al

Fu
r B

al
l

Figure 15: The five test scenes rendered at 1280× 720 : Old City, UE3 Foliage Map (Courtesy Epic Games), Bamboo, Metal and Fur Ball.

The benefits of our technique, both in terms of memory saving and
shading time, furthermore increase with as the geometric sampling
rate increases. Looking forward, our technique makes much higher
MSAA rates affordable, motivating GPU hardware support for cov-
erage estimation and depth testing above 8 samples per pixel. In
order to improve quality and reduce shading rate even more, future
work will design new normal distribution functions and associated
shading models adapted to our representation, which would provide
a more precise description of filtered surfaces inside aggregates.

Acknowledgements
We thank David Luebke and Louis Bavoil for the helpful discus-
sions, Nir Benty for his help with the video results and editing, as
well as the anonymous reviewers for their suggestions. We also
want to thank the G3D Innovation Engine team for their great 3D
engine that we used for prototyping, Epic Games for the UE3 Fo-
liage Map scene, Anjul Patney for the Metal scene, Samuli Laine
and Tero Karras for the Fur Ball model, Guillermo M. Leal Lla-
guno for the furniture and tree models, and we purchased the Old
City model from TurboSquid.

References

AKELEY, K. 1993. Reality engine graphics. In Proceedings of
SIGGRAPH ’93, ACM, 109–116.

AKENINE-MÖLLER, T., MUNKBERG, J., AND HASSELGREN, J.
2007. Stochastic rasterization using time-continuous triangles.
In Graphics Hardware, 7–16.

ANDERSSON, J., 2011. Shiny PC graphics in
Battlefield 3. GeForce LAN. http://www.
slideshare.net/fullscreen/DICEStudio/
shiny-pc-graphics-in-battlefield-3/.

BAGHER, M. M., SOLER, C., SUBR, K., BELCOUR, L., AND
HOLZSCHUCH, N. Interactive rendering of acquired materials
on dynamic geometry using bandwidth prediction. In Proceed-
ings of I3D ’12, ACM, 127–134.

BAKER, D., AND HILL, S. 2012. Rock-solid shading. In Advances
in Real-Time Rendering in 3D Graphics and Games. SIGGRAPH
Course.

BAKER, D. 2011. Lean and clean specular highlights. In Game
Developer Conference.

BRUNETON, E., AND NEYRET, F. 2011. A survey of non-linear
pre-filtering methods for efficient and accurate surface shading.
IEEE TVCG.

CHAJDAS, M. G., MCGUIRE, M., AND LUEBKE, D. 2011. Sub-
pixel reconstruction antialiasing for deferred shading. In Pro-
ceedings of I3D 2011, ACM, 15–22.

CHRISTENSEN, P. H., AND BATALI, D. 2004. An irradiance atlas
for global illumination in complex production scenes. In Pro-
ceedings of EGSR’04, Eurographics Association, 133–141.

CLARBERG, P., TOTH, R., AND MUNKBERG, J. 2013. A
sort-based deferred shading architecture for decoupled sampling.
ACM Trans. Graph. 32, 4 (July), 141:1–141:10.

COFFIN, C., 2011. SPU-based deferred shading for Battlefield 3 on
Playstation 3. Game Dev. Conf.

COHEN, J., OLANO, M., AND MANOCHA, D. Appearance-
preserving simplification. In Proceedings of ACM SIGGRAPH
’98.

COOK, R. L., HALSTEAD, J., PLANCK, M., AND RYU, D. 2007.
Stochastic simplification of aggregate detail. In Proceedings of
ACM SIGGRAPH ’07, ACM.

CRASSIN, C., NEYRET, F., LEFEBVRE, S., AND EISEMANN, E.
2009. Gigavoxels: Ray-guided streaming for efficient and de-
tailed voxel rendering. In Proceedings of I3D ’09, ACM, 15–22.

CRASSIN, C., NEYRET, F., SAINZ, M., GREEN, S., AND EISE-
MANN, E. 2011. Interactive indirect illumination using voxel
cone tracing. Computer Graphics Forum (Proceedings of Pacific
Graphics 2011) 30, 7 (sep).

http://www.slideshare.net/fullscreen/DICEStudio/shiny-pc-graphics-in-battlefield-3/
http://www.slideshare.net/fullscreen/DICEStudio/shiny-pc-graphics-in-battlefield-3/
http://www.slideshare.net/fullscreen/DICEStudio/shiny-pc-graphics-in-battlefield-3/

Aggregate G-Buffer Anti-Aliasing - Extended Version 14

Shader Evaluations per Pixel
1 2 3 4

AG
A

A
SB

A
A

Baseline
(16x supersampling)

Triangle count

D
i�

er
en

ce
 x

2
D

i�
er

en
ce

 x
2

O
ut

pu
t

O
ut

pu
t

AG
A

A
SB

A
A

Baseline
(16x supersampling)

Triangle count

D
i�

er
en

ce
 x

2
D

i�
er

en
ce

 x
2

O
ut

pu
t

O
ut

pu
t

Figure 16: Shading only a few aggregates stored in an aggregate G-buffer often closely approximate the results of super-sampled shading
(shown here compared to 16× super-sampled shading). Image quality is noticeably better than that of Surface-Based Anti-Aliasing (SBAA).
The improvement over SBAA is even more pronounced under motion.

DECAUDIN, P., AND NEYRET, F. 2004. Rendering forest scenes
in real-time. In Rendering Techniques (EGSR), 93–102.

DÉCORET, X., DURAND, F., SILLION, F. X., AND DORSEY, J.
2003. Billboard clouds for extreme model simplification. ACM
Trans. Graph. 22, 3 (July), 689–696.

DONNELLY, W., AND LAURITZEN, A. 2006. Variance shadow
maps. In Proceedings of I3D 2006, ACM, 161–165.

DUPUY, J., HEITZ, E., IEHL, J.-C., POULIN, P., NEYRET, F.,
AND OSTROMOUKHOV, V. 2013. Linear efficient antialiased
displacement and reflectance mapping. ACM Transactions on
Graphics 32, 6 (Nov.), Article No. 211.

FATAHALIAN, K., BOULOS, S., HEGARTY, J., AKELEY, K.,
MARK, W. R., MORETON, H., AND HANRAHAN, P. 2010. Re-
ducing shading on gpus using quad-fragment merging. In SIG-
GRAPH, ACM.

Aggregate G-Buffer Anti-Aliasing - Extended Version 15

FILION, D., AND MCNAUGHTON, R., 2008. Chapter 5: Starcraft
ii effects and techniques. SIGGRAPH 2008 Advances in Real-
Time Rendering in 3D Graphics and Games Course.

FILION, D., AND MCNAUGHTON, R., 2014. How inFAMOUS:
Second son used the PS4. Dual Shockers online article.
http://www.dualshockers.com/2014/04/02/how...

FOURNIER, A. 1992. Filtering normal maps and creating multiple
surfaces. In Technical report, University of British Columbia.

FOURNIER, A. 1992. Normal distribution functions and multiple
surfaces. In Graphics Interface, 45–52.

HAN, C., SUN, B., RAMAMOORTHI, R., AND GRINSPUN, E.
2007. Frequency domain normal map filtering. SIGGRAPH 26,
3, 28:1–28:12.

HASSELGREN, J., AND AKENINE-MÖLLER, T. 2006. Efficient
depth buffer compression. In Graphics Hardware ’06, ACM,
103–110.

HEITZ, E., AND NEYRET, F. Representing Appearance and Pre-
filtering Subpixel Data in Sparse Voxel Octrees. In HPG ’12,
ACM/Eurographics, 125–134.

HEITZ, E., DUPUY, J., CRASSIN, C., AND DACHSBACHER, C.
2015. The sggx microflake distribution. ACM Trans. Graph. 34,
4 (July), 48:1–48:11.

HERZOG, R., EISEMANN, E., MYSZKOWSKI, K., AND SEIDEL,
H.-P. 2010. Spatio-temporal upsampling on the gpu. In Pro-
ceedings of I3D 2010, ACM, 91–98.

HOLLANDER, M., BOUBEKEUR, T., AND EISEMANN, E. 2013.
Adaptive supersampling for deferred anti-aliasing. Journal of
Computer Graphics Techniques 2, 1, 1–14.

KARIS, B. 2013. Real shading in unreal engine 4. In Physically
Based Shading in Theory and Practice, ACM, SIGGRAPH ’13
Courses.

KASYAN, N., SCHULZ, N., AND SOUSA, T., 2011. Secrets of
CryENGINE 3 graphics technology. SIGGRAPH 2011 Ad-
vances in Real-Time Rendering in 3D Graphics and Games
Course.

KERZNER, E., AND SALVI, M. 2014. Streaming g-buffer compres-
sion for multi-sample anti-aliasing. In HPG2014, Eurographics
Association.

KIRKLAND, D., ARMSTRONG, B., GOLD, M., LEECH, J., AND
WOMACK, P., 1999. ARB Multisample OpenGL extension
specification. http://www.opengl.org/registry/
specs/ARB/multisample.txt.

LACEWELL, J. D., EDWARDS, D., SHIRLEY, P., AND THOMP-
SON, W. B. 2006. Stochastic billboard clouds for interactive
foliage rendering. J. Graphics Tools 11, 1, 1–12.

LAGARDE, S., AND DE ROUSIERS, C. 2014. Moving Frostbite
to PBR. In Physically Based Shading in Theory and Practice,
ACM, SIGGRAPH ’14 Courses.

LAURITZEN, A., 2010. Deferred rendering for current and fu-
ture rendering pipelines. SIGGRAPH Course. Beyond Pro-
grammable Shading.

LIKTOR, G., AND DACHSBACHER, C. 2012. Decoupled deferred
shading for hardware rasterization. In Proceedings of I3D ’12,
ACM, 143–150.

LOTTES, T., 2009. Fast Approximate Anti-Aliasing
(FXAA). http://developer.download.nvidia.
com/assets/gamedev/files/sdk/11/FXAA_
WhitePaper.pdf.

LUEBKE, D., WATSON, B., COHEN, J. D., REDDY, M., AND
VARSHNEY, A. 2002. Level of Detail for 3D Graphics. Elsevier
Science Inc.

MCGUIRE, M., ENDERTON, E., SHIRLEY, P., AND LUEBKE, D.
2010. Real-time stochastic rasterization on conventional gpu ar-
chitectures. In HPG.

MITTRING, M., 2012. The-technology-behind-the-elemental-
demo. SIGGRAPH 2012 Advances in Real-Time Rendering in
3D Graphics and Games Course.

NVIDIA. 2014. TXAA Technology Documentation. Avail-
able at http://www.geforce.com/hardware/technology/txaa/

technology.

NVIDIA, 2014. NVIDIA OpenGL Extensions Speci-
fications. https://developer.nvidia.com/
nvidia-opengl-specs.

OLANO, M., AND BAKER, D. 2010. Lean mapping. In Proceed-
ings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games, ACM, I3D ’10, 181–188.

OLANO, M., AND NORTH, M. 1997. Normal distribution map-
ping. Tech. rep.

RAGAN-KELLEY, J., LEHTINEN, J., CHEN, J., DOGGETT, M.,
AND DURAND, F. 2011. Decoupled sampling for graphics
pipelines. ACM Trans. Graph. 30, 3 (May), 17:1–17:17.

RESHETOV, A. 2009. Morphological antialiasing. In Proceedings
of HPG ’09, ACM, 109–116.

RESHETOV, A. 2012. Reducing aliasing artifacts through resam-
pling. In Proceedings of HPG’12, Eurographics Association,
77–86.

SALVI, M., AND VIDIMČE, K. 2012. Surface based anti-aliasing.
In I3D’12, ACM, 159–164.

SCHULZ, N. 2014. The rendering technology of ryse. In Ad-
vances in Real-time Rendering in Games, ACM, SIGGRAPH
’14 Courses.

TATARCHUK, N., TCHOU, C., AND VENZON, J., 2013. Des-
tiny: From mythic science fiction to rendering in real-time. SIG-
GRAPH 2013 Advances in Real-Time Rendering in 3D Graphics
and Games Course.

TOKSVIG, M. 2005. Mipmapping normal maps. Journal of Graph-
icsTools 10, 3, 65–71.

VALIENT, M., 2007. Deferred rendering in Killzone 2. Game De-
velopers Conference.

WALTER, B., MARSCHNER, S. R., LI, H., AND TORRANCE,
K. E. 2007. Microfacet models for refraction through rough
surfaces. In Proceedings of the 18th Eurographics Conference
on Rendering Techniques, EGSR’07, 195–206.

YOON, S.-E., LAUTERBACH, C., AND MANOCHA, D. 2006. R-
lods: Fast lod-based ray tracing of massive models. Vis. Comput.
22, 9 (Sept.), 772–784.

http://www.dualshockers.com/2014/04/02/how-infamous-second-son-used-the-ps4s-8-4-5-gb-of-ram-cpu-and-gpu-compute-to-make-our-jaws-drop/
http://www.opengl.org/registry/specs/ARB/multisample.txt
http://www.opengl.org/registry/specs/ARB/multisample.txt
http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
http://www.geforce.com/hardware/technology/txaa/technology
http://www.geforce.com/hardware/technology/txaa/technology
https://developer.nvidia.com/nvidia-opengl-specs
https://developer.nvidia.com/nvidia-opengl-specs

