
Octree-Based Sparse Voxelization for
Real-Time Global Illumination

Cyril Crassin
NVIDIA Research

Voxel representations

Allard et al. 2010

Crane et al. (NVIDIA) 2007

Christensen and Batali (Pixar) 2004

Global Illumination

 Indirect effects

 Important for realistic image synthesis

Direct lighting Direct+Indirect lighting

Light Propagation Volumes
 [Kaplanyan & Dachsbacher 2010]

— Limited resolution + Mostly diffuse

Reflective shadow maps Radiance volume gathering

VPL

VPL

VPL

Iterative propagation

Sparse Voxel Octree
 Detailed geometry rendering

— Structured LODs
Olick. 2008

Laine and Karras (NVIDIA) 2010

Crassin et al. 2009
(GigaVoxels)

Interactive indirect illumination
using voxel cone tracing

120 FPS @ 512x512 -- 16 FPS @ FullHD

Publications

Interactive indirect illumination
using voxel cone tracing

C. Crassin, F. Neyret, M. Sainz, S. Green, E. Eisemann

— Computer Graphics Forum
(Proc. of Pacific Graphics 2011)

— http://research.nvidia.com/publication/interactive-
indirect-illumination-using-voxel-cone-tracing

 I3D 2011 Poster
— http://maverick.inria.fr/Publications/2011/CNSGE11/

 Siggraph 2011 Talk
— http://maverick.inria.fr/Publications/2011/CNSGE11a/

•

Voxel cone tracing

 Geometry pre-filtering
Traced like a participating media

— Volume ray-casting

 Voxel representation
Scene geometry : Opacity field

+ Incoming radiance

3D MIP-map pyramid
of pre-filtered values

Quadrilinearly
interpolated samples

n
r

l

Rendering algorithm

1. Light pass (es)

— Bake irradiance (RSM)

2. Filtering pass
— Down-sample radiance

in the octree

3. Camera pass
— For each visible

fragment:

 Gather indirect radiance

Diffuse cones

l

n View
direction

d

Light
source

n

Scene model courtesy of Guillermo M. Leal Llaguno

Ambient Occlusion

Indirect diffuse

Indirect diffuse

Specular tracing

l

d

Light
source

n

Specular
cone

Diffuse cones

n View
direction

Voxel-based cone

Indirect specular

Indirect specular

GPU Voxel Octree

 Linked nodes in linear video memory
(Octree Pool)

— 2x2x2 nodes tiles

— 1 pointer per node to a node-tile

 Voxels stored into a 3D texture
(Brick Pool)

— Allows hardware tri-linear interpolation

1

2

4 5

8 6 7

3

9

1 2 3 4 5

Octree
pool Li

ne
ar

 M
em

or
y

6 7 8 9

3D
 T

ex
tu

re

Brick
pool

Dynamic Voxelization

 Entirely done using the GPU
graphics pipeline

— Sparse (No plain grid allocation)

 Two modes :
— Static environment

 Pre-voxelized (~20ms)

— Dynamic objects
 Added to the structure

at runtime (~4-5ms)

Previous GPU approaches

 Compute-based
[Schwarz and Seidel 10, Pantaleoni 11]

— Not using hw rasterizer

 Multi-pass graphics-based
— Slice-by-slice

[Fang et al. 00, Crane et al. 07, Li et al. 05]

— Multiple-slices through MRT
[Dong et al. 04, Zhang et al. 07,
Eisemann and Decoret 08]

Crane et al. 2007

VoxelPipe [Pantaleoni 11]

OpenGL 4.2 Image Load/Store

 Random read/write access to textures
— Shaders with side effects !

 Shader Model 5 hw (NVIDIA Fermi / Kepler)

 Similar to DX11 UAV

— Uniform layout(rgba32f) image3D voxData;
 imageStore(voxData, ivec3(coords), val);

 NVIDIA Bindless Graphics
— Pointers to global memory : NV_shader_buffer_load/store

— Uniform vec4 *voxData;

One pass voxelization pipeline

 Thin surface voxelization

x

x
y y

z

z

Y-
proj

Z-
proj

X-
proj

Normal

Triangle
Dominant

Axis Selection

Triangle
Projection

Voxel
Attributes

Computation

Geometry Shader Fragment Shader

Ha
rd

w
ar

e
Se

tu
p/

Ra
st

er
.

Write to 3D
surface

Edges
Shifting

Fragments
Clipping

Conservative
Rasterization

VS

Compositing voxel fragments

 To texture or linear buffer (global memory)
 Native AtomicAdd

— INT32

— INT64 (NVIDIA Only, global memory)

— FP32 (NVIDIA Only, NV_shader_atomic_float extension)

 Emulation for any format (RGBA8, RGBA16F…)

— AtomicCompSwap / AtomicCompSwap64
 (2x-3x speed penalty)

— Moving average (RGBA8) + Voxel Anti-Aliasing (coverage mask)

Results

 Stanford Dragon
— GTX 480 (GF100)

 Usually as good as, or even faster
than Voxel Pipe [Pantaleoni 11]

 Times in ms

Sparse Octree construction

 Sparse voxelization
 No plain grid allocation

 Two steps:
1. Octree subdivision 2. Values MIP-mapping

0

1

2 0

1

2

Octree construction (1/2)

 Step 1 : Top-down construction
— For each level from the root:

Node pool

1 2 3 4 0

1 thread per
voxel-fragment

Create New Node Tiles Init New Node Tiles

Node pool

1 2 3 4 5 6 7 8 0

9 10 11 12 13 14 15 16

1 thread per node

Node pool

1 2 3 4 5 6 7 8 0

9 10 11 12 13 14 15 16

1 thread per node

Voxelize Mesh at level
resolution

Tag octree nodes

0

1

2

OpenGL compute kernel emulation

 Emulated using a vertex shader
— gl_VertexID == ThreadID

— No input attribute

 Synchronization-free: Indirect draw calls
— glDrawArraysIndirect()

— Parameters read in video memory
 No CPU read-back

 Memory barriers: glMemoryBarrier()

— Batching all construction steps

Octree construction (2/2)

 Step 2: Populating octree with values

1. Voxelize mesh into leaf nodes
— Average all incoming values

per voxel

2. MIP-map values into
interior nodes

Write values in
leaf nodes

Bottom-up
MIP-mapping

0

1

2

Results

 9 levels octree (512^3)
— RGBA32F

 Kepler GK104 performance
— 30% - 58% faster than Fermi GF100

— Atomic merging up to 80% faster.

 Times in ms

OpenGL Insights

 Octree-Based Sparse Voxelization
Using The GPU Hardware Rasterizer

Cyril Crassin and Simon Green

 To be released for Siggraph 2012
Patrick Cozzi & Christophe Riccio

Thank you !

Talk
 S0610 - Octree-Based Sparse Voxelization for Real-Time Global Illumination

Cyril Crassin (NVIDIA)

Discrete voxel representations are generating growing interest in a wide range of applications in computational
sciences and particularly in computer graphics. A new real-time usage of dynamic voxelization inside a sparse
voxel octree is to compute voxel-based global illumination. When used in real-time contexts, it becomes critical
to achieve fast 3D scan conversion (also called voxelization) of traditional triangle-based surface
representations. This talk describes an new surface voxelization algorithm that produces a sparse voxel
representation of a triangle mesh scene in the form of an octree structure using the GPU hardware rasterizer. In
order to scale to very large scenes, our approach avoids relying on an intermediate full regular grid to build the
structure and constructs the octree directly.

Topic Areas: Computer Graphics
Level: Intermediate

Day: Tuesday, 05/15
Time: 2:30 pm - 2:55 pm
Location: Room B

	Slide Number 1
	Voxel representations
	Global Illumination
	Light Propagation Volumes
	Sparse Voxel Octree
	Interactive indirect illumination �using voxel cone tracing
	Publications
	Slide Number 8
	Slide Number 9
	Voxel cone tracing
	Rendering algorithm
	Ambient Occlusion
	Indirect diffuse
	Indirect diffuse
	Slide Number 15
	Specular tracing
	Indirect specular
	Indirect specular
	Slide Number 19
	Slide Number 20
	GPU Voxel Octree
	Dynamic Voxelization
	Previous GPU approaches
	OpenGL 4.2 Image Load/Store
	One pass voxelization pipeline
	Compositing voxel fragments
	Results
	Sparse Octree construction
	Octree construction (1/2)
	OpenGL compute kernel emulation
	Octree construction (2/2)
	Results
	OpenGL Insights
	Slide Number 34
	Talk

